350 rub
Journal Antennas №6 for 2020 г.
Article in number:
Design technique for helical vibrators with reactive loads
DOI: 10.18127/j03209601-202006-07
UDC: 621.396.673
Authors:

Sergey N. Boyko¹, Egor A. Zevakin², Oleg V. Koryshev³, Ivan M. Trukhachev4

Branch of JSC “URSC” – “ISDE” (Moscow, Russia) 1–4  

Abstract:

Many VHF communication devices include multi-frequency vibrators among which helical vibrators with reactive loads occupy a special place, as the most compact and simple to produce. However to date there was no model for calculating the following characteristics of such antennas: input impedance, voltage standing wave ratio (VSWR), current distribution over the vibrator, radiation patterns at resonant frequencies.

The purpose of this paper is to develop an engineering methodology for calculating the above mentioned characteristics of multifrequency vibrators, suitable for vibrators with reactive loads.

The paper presents the methodology for calculating the input impedance and VSWR, current distribution over the vibrator and radiation patterns based on the idea, that a multi-frequency vibrator is represented in the form of an equivalent long line with reactive loads along its length. The proposed technique is used to design a helical asymmetric vibrator (monopole) with one (dual-frequency vibrator) inductive load and a monopole with two (three-frequency vibrator) inductive loads. Based on the analysis of calculated and experimental data, it has been proved that proposed methodology can be used to design the multi-frequency helical vibrators with reactive loads.

Analysis of the obtained data on modeling helical dipole antennas with inductive inclusions allows us to draw the following conclusions. Calculation of matching with the feeding feeder according to the proposed method gives an error of resonance frequencies, determined by the minimum VSWR, in the range from 1.5% to 10.5%. The calculation gives close to experiment values of VSWR at resonant frequencies. The results of this work can be used to design the multi-frequency VHF helical vibrators

Pages: 54-67
References
  1. Petrov A.S., Kovaleva M.V. Soglasovanie vkhodnogo impedansa korotkogo monopolya s volnovym soprotivleniem trakta pri pomoshchi Γ-zvena, sostoyashchego iz induktivnostej s konechnoj dobrotnost'yu. Radiotekhnika i elektronika. 2012. T. 57. № 4. S. 418–421. (in Russian)
  2. Petrov A.S., Kovaleva M.V. Soglasovanie kompleksnogo soprotivleniya s fidernym traktom pri pomoshchi G-zven'ev, sostoyashchikh iz reaktivnykh LC-elementov s konechnoj dobrotnost'yu. Radiotekhnika i elektronika. 2012. T. 57. № 6. S. 624–631. (in Russian)
  3. Ovsyannikov V.V. Vibratornye antenny s reaktivnymi nagruzkami. M.: Radio i svyaz'. 1985. (in Russian)
  4. Bobreshov A.M., Uskov G.K., Kondrat'ev D.P., Neskorodov S.E. Vsenapravlennaya shirokopolosnaya vibratornaya antenna. Antenny. 2019. № 8. S. 5–11. (in Russian)
  5. Bojko S.N., Kovaleva M.V., Petrov A.S. Trekhchastotnaya samoletnaya antenna dlya sistemy KOSPAS–SARSAT. Antenny. 2012. № 7. S. 34–39. (in Russian)
  6. Rotkhammel' K. Antenny. Izd. 11-e, ispr. T. 1. M.: Danvel. 2005. (in Russian)
  7. Ovsyannikov V.V. Elektricheski malye vibratornye, spiral'nye i petlevye antenny. Radiofizika i elektronika. 2017. T. 8 (22). № 1. S. 57–67. (in Russian)
  8. Huang L., Xiong J., Yu Y. An electrically small normal-mode helical antenna with capacitive coupling feed. The 8th European Conference on Antennas and Propagation. 2014. P. 2915–2917.
  9. Yurtsev O.A., Runov A.V., Kazarin A.N. Spiral'nye antenny. M.: Sov. radio. 1974. (in Russian)
  10. Neganov V.A., Tabakov D.P. Singulyarnye integral'nye predstavleniya elektromagnitnogo polya kak sredstvo korrektnogo resheniya antennykh zadach. Fizika volnovykh protsessov i volnovye sistemy. 2014. T. 17. № 3. S. 9–23. (in Russian)
  11. Neganov V.A., Tabakov D.P. Primenenie teorii singulyarnykh integral'nykh uravnenij k elektrodinamicheskomu analizu tsilindricheskoj spiral'noj antenny. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2009. T. 12. № 2. S. 20–29. (in Russian)
  12. Neganov V.A., Tabakov D.P. Matematicheskie modeli tsilindricheskoj spiral'noj antenny. Fizika volnovykh protsessov i volnovye sistemy. 2013. T. 16. № 14. S. 9–23. (in Russian)
  13. Dement'ev A.N., Klyuev D.S., Tabakov D.P. Elektrodinamicheskij analiz spiral'nykh izluchatelej, raspolozhennykh na poverkhnosti ellipsoida. Doklady Akademii nauk. 2017. T. 472. № 4. S. 393–397. (in Russian)
  14. Vychislitel'nye metody v elektrodinamike. Pod red. R. Mitry. Per. s angl. pod red. E.L. Burshtejna. M.: Mir. 1977. (in Russian)
  15. Fradin A.Z. Antenno-fidernye ustrojstva. M.: Svyaz'. 1977. (in Russian)
  16. Sazonov D.M. Antenny i ustrojstva SVCh. M.: Vysshaya shkola. 1988. (in Russian)
  17. Bojko S.N., Zevakin E.A., Koryshev O.V., Trukhachev I.M. Metodika rascheta vkhodnykh kharakteristik vibratornoj antenny s reaktivnymi vklyucheniyami. Radiotekhnika. 2020. № 5 (10). S. 53–66. (in Russian)
  18. Silin R.A., Sazonov V.P. Zamedlyayushchie sistemy. M.: Sov. radio. 1966. (in Russian)
  19. Demirchyan K.S., Nejman L.R., Korovkin N.V., Chechurin V.L. Teoreticheskie osnovy elektrotekhniki. T. 3. SPb.: Piter. 2003. (in Russian)
  20. Demirchyan K.S., Nejman L.R., Korovkin N.V., Chechurin V.L. Teoreticheskie osnovy elektrotekhniki. T. 2. SPb.: Piter. 2003. (in Russian) .
  21. Vasil'ev A. Machcad 13 na primerakh. SPb.: BKhV-Peterburg. 2006. (in Russian)
Date of receipt: 07.09.2020.