350 rub
Journal Antennas №5 for 2020 г.
Article in number:
Determination of frequency-selective parameters of the volumetric strip-slot transition
DOI: 10.18127/j03209601-202005-06
UDC: 621.372.543.2
Authors:

D. G. Fomin – Post-graduate Student,

Department of Infocommunication Technologies,

South Ural State University (National Research University) (Chelyabinsk)

E-mail: Fomin95@ya.ru

N. V. Dudarev – Research Scientist,

Department of Infocommunication Technologies,

South Ural State University (National Research University) (Chelyabinsk)

E-mail: dudarevn1993@mail.ru

S. N. Darovskikh – Dr.Sc. (Eng.), Head of Department of Infocommunication Technologies, South Ural State University (National Research University) (Chelyabinsk)

E-mail: darovskih.s@mail.ru

Abstract:

The use of devices with frequency selective properties is relevant for modern wireless communication systems in the microwave frequency range. Devices that transmit microwave radio signals should have a minimum level of out-of-band and spurious radiation. Receiving devices must have high selectivity and select only the required signal spectrum. A promising direction in the creation of such devices is their volume-modular construction using volumetric strip-slot transitions. This paper presents the development of an equivalent circuit and a mathematical model of the volumetric strip-slot transition. The mathematical model of the volumetric stripslot transitions based on the use of ABCD matrices for two-port networks has been presented. Mathematical simulation for the cascade connection of two-port networks has been carried out. The results of the mathematical simulation have been presented in the form of dependences of transmission coefficients and reflection coefficients in the frequency range. The developed equivalent circuit has been simulated in the circuit design program. The results of the equivalent circuit simulation have been given in the form of dependences of transmission coefficients and reflection coefficients in the frequency range.

A numerical simulation of the volumetric strip-slot transition has been carried out, based on the solution of a boundary value problem in a strict diffraction formulation by direct numerical methods. The results of the numerical simulation have been presented in the form of dependences of transmission coefficients and reflection coefficients in the frequency range. The frequency-selective parameters of the volumetric strip-slot transition have been estimated based on the results of the above mentioned simulations. The presented results of three types of simulations are in good numerical agreement with each other. The main attention in determining the frequency-selective parameters of the volumetric strip-slot transition is given to determining the value of the quality factor, the relative bandwidth at the level -3 dB of the transmission coefficient, and the relative bandwidth at the level below -20 dB for the reflection coefficient.

The presented volumetric strip-slot transition has a band-pass characteristic and can be used in a wide range of radio engineering systems. The main advantage of the investigated volumetric strip-slot transition is simplicity of its design while maintaining its functional purpose.

Pages: 49-55
References
  1. Шевляков М., Кондратенко А. Полосно-пропускающие СВЧ фильтры НПФ «Микран» // Компоненты и технологии. 2008. № 11. С. 16–18. URL: https://kit-e.ru/svch/polosno-propuskayushhie-svch-filtry-proizvodstva-npf-mikran/
  2. Попов В.В., Одоевская Л.А., Бичурин М.И. Разработка малогабаритных полосовых СВЧ фильтров // Вестник Новгородского государственного университета. 2008. № 46. С. 45–48.
  3. Pozar D.M. Microwave engineering. Ed. 4th. 2011.
  4. Dudarev N.V., Darovskikh S.N., Vdovina N.V. Design fundamentals of a three-dimensional modular microwave phase converter // Proceedings of the 12th International Scientific and Technical Conference «Dynamics of Systems, Mechanisms and Machines». Omsk, Russia. 2019.
  5. Клыгач Д.С., Вахитов М.Г., Дударев Н.В., Даровских С.Н., Дударев С.В. Моделирование объемного полосково-щелевого перехода // Журнал радиоэлектроники [электронный журнал]. 2020. № 7.
  6. Бухарин В.А. Теоретические основы устройств СВЧ. Учеб. пособие. Челябинск: Издательство ЧГТУ. 1996.
  7. Сазонов Д.М. Антенны и устройства СВЧ. Учеб. для вузов. М.: Высшая школа. 1988
Date of receipt: 10 августа 2020 г.
Article

  1. Shevlyakov M., Kondratenko A. Polosno-propuskayushchie SVCh fil'try NPF «Mikran». Komponenty i tekhnologii. 2008. № 11. S. 16–18. URL: https://kit-e.ru/svch/polosno-propuskayushhie-svch-filtry-proizvodstva-npf-mikran/ (in Russian)
  2. Popov V.V., Odoevskaya L.A., Bichurin M.I. Razrabotka malogabaritnykh polosovykh SVCh fil'trov. Vestnik Novgorodskogo gosudarstvennogo universiteta. 2008. № 46. S. 45–48. (in Russian)
  3. Pozar D.M. Microwave engineering. Ed. 4th. 2011.
  4. Dudarev N.V., Darovskikh S.N., Vdovina N.V. Design fundamentals of a three-dimensional modular microwave phase converter. Proceedings of the 12th International Scientific and Technical Conference “Dynamics of Systems, Mechanisms and Machines”. Omsk, Russia. 2019.
  5. Klygach D.S., Vakhitov M.G., Dudarev N.V., Darovskikh S.N., Dudarev S.V. Modelirovanie ob''emnogo poloskovo-shchelevogo perekhoda. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2020. № 7. (in Russian)
  6. Bukharin V.A. Teoreticheskie osnovy ustrojstv SVCh. Ucheb. posobie. Chelyabinsk: Izdatel'stvo ChGTU. 1996. (in Russian)
  7.  Sazonov D.M. Antenny i ustrojstva SVCh. Ucheb. dlya vuzov. M.: Vysshaya shkola. 1988. (in Russian)