350 rub
Journal Antennas №8 for 2019 г.
Article in number:
Signal polarization aggregation
Type of article: scientific article
DOI: 10.18127/j03209601-201908-04
UDC: 621.396.96
Authors:

O. S. Mironov – Ph.D. (Eng.), Engineer,

JSC “Radar mms” (Saint-Petersburg)

E-mail: mironov_os@radar-mms.com

Abstract:

Nowadays one can consider that a theory of polarized signals is complete for the linear systems. This theory lies on the following principles: the polarized structure can be determined independently from its time structure; the time structure of the polarized signals is considered identical and generally sinusoidal; polarized structure of the signals is corresponds to the polarization basis. According to those principles, the main goal of the article is to make a basement for the main polarimetry results propagation for the wider range of applications.

The polarization parameters for an arbitrary analytical Jones vector are calculated, but those parameters are time-dependent, on the contrary with the sinusoidal signals, where those parameters are time-constant. This fact shows the main difference between the orthodoxal polarization theory and the polarization of non-sinusoidal signals. For the rest, these two theories are fully compatible. The pair of arbitrary analytical signals, which build a Jones vector, can be divided into two orthogonal Jones vectors. Moreover, the phase polarization parameters for those separate Jones vectors are not time-dependent, which means that those vectors are fully polarized. After that, some examples of decomposition are presented. As a conclusion, we can say that any pair of arbitrary signals can be empowered with a polarization structure, which means that for this pair there exists a decomposition in arbitrary orthogonal polarization basis.

Pages: 27-35
References
  1. Kozlov A.I., Logvin A.I., Sarychev V.A. Polyarizatsiya radiovoln. Kn. 1. Polyarizatsionnaya struktura radiolokatsionnykh signalov. M.: Radiotekhnika. 2005.
  2. Kozlov A.I., Logvin A.I., Sarychev V.A. Polyarizatsiya radiovoln. Kn. 2. Radiolokatsionnaya polyarimetriya. M.: Radiotekhnika. 2007.
  3. Kozlov A.I., Logvin A.I., Sarychev V.A. Polyarizatsiya radiovoln. Kn. 3. Radiopolyarimetriya slozhnykh po strukture signalov. M.: Radiotekhnika. 2008.
  4. Tatarinov V.N., Tatarinov S.V., Ligtkhart L.P. Vvedenie v sovremennuyu teoriyu polyarizatsii radiolokatsionnykh signalov. T. 1. Polyarizatsiya ploskikh elektromagnitnykh voln i ee preobrazovaniya. Tomsk: Izd. Tomskogo un-ta. 2006.
  5. Kozlov A.I., Tatarinov V.N., Tatarinov S.V. Vvedenie v sovremennuyu teoriyu polyarizatsii radiolokatsionnykh signalov. T. 2. Statisticheskaya teoriya polyarizatsii. Tomsk: TUSUR. 2007.
  6. Boerner W.-M. et al. eds. Direct and inverse methods in radar polarimetry. Part 1. Proc. Nato-ARW-DIMPR. 1988. NATO-ASI-Series C (Math. & Phys. Sci.). Dorfrecht/BostonL D. Reidel Publ. Co. 1992.
  7. Antsev G.V., Mironov O.S., Sarychev V.A. SDR i teoriya radiolokatsionnogo kanala. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2010. № 11. S. 3–5.
  8. Vajnshtejn L.A., Vakman D.E. Razdelenie chastot v teorii kolebanij i voln. M.: Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury. 1983.
  9. Antipenskij R.V., Lozhkin K.Yu., Poddubnyj V.N., Tyulin A.E. Analiticheskie signaly v statisticheskoj radiotekhnike. M.: Radiotekhnika. 2016.
  10. Mironov O.S. Issledovanie polyarizatsionnykh kharakteristik sverkhkorotkoimpul'snykh signalov. Antenny. 2010. № 8. S. 8–12.
Date of receipt: 20 ноября 2018 г.