350 rub
Journal Antennas №4 for 2019 г.
Article in number:
Dual-band combined VHF/UHF antenna system for aviation monitoring of the earth surface
Type of article: scientific article
DOI: 10.18127/j03209601-201904-02
UDC: 621.396
Authors:

А. Yu. Grinev – Dr.Sc. (Eng.), Professor,

Department of Radiophysics, Antennas and Microwave Technique,

Moscow Aviation Institute (National Research University)

E-mail: grinevau@yandex.ru

А. А. Izmaylov – Post-graduate Student,

Department of Radiophysics, Antennas and Microwave Technique,

Moscow Aviation Institute (National Research University);

Engineer of 1st cat., PJSC “Almaz” (Moscow)

E-mail: yustas1993@yandex.ru

А. P. Volkov – Ph.D. (Eng.), Senior Research Scientist,

JSC «Concern of Radio Engineering «Vega» (Moscow) E-mail: tkoh@yandex.ru

Abstract:

Different approaches to creation of antenna systems (AS) of the different ranges combined in one aperture, in particular X, L, UHF and VHF, are developed for the benefit of radar-location, systems with the synthesized aperture, communication systems, radar patrol and targeting. In particular, in [5] the schemes of combination and results of the analysis of dipole-dipole antenna arrays are provided, however the possibility of integration of the AS with composite structures which have properties of artificial magnetic conductors, and also advantages and features of such schemes of creation are not considered. In [10] it is offered to use composite artificial magnetic structures for the purpose of reduction of the AS cross size: as a result the cross size of the VHF band antenna system has been made equal to 81 mm at f = 160 MHz (λ = 187 cm).

The article proposes implementation of the combined antenna system, with use of frequency selective structures (FSS) having properties of a surface with high impedance. The considered structures are the useful tool which assorted implementation can improve its characteristics: to reduce profile height, to increase a band of operating frequencies and to lower an effective surface of dispersion, to reduce the level of cross-polarizing radiation of microstrip antenna array. The principles of creation and functioning of the antenna arrays on the basis of FSS with property of a high impedance surface (artificial magnetic conductor – AMC), allowed to combine in a uniform aperture the antenna arrays of VHF (~150 MHz) and UHF (~435 MHz) ranges for a complex of aviation monitoring of land surface. The height of a profile of the designed antenna system is 0,16λvhf (this is lower at 36% as compared with a classic case of combined dipole-dipole antenna systems) while a working frequency band is 30% in the VHF band and 18% in the UHF band if SWR is no more 2. Decoupling of antennas of the considered ranges doesn’t exceed -30 dB.

Pages: 20-32
References
  1. Space antenna handbook / Ed. by W. Imbriale, S. Gao, L. Boccia. John Wiley & Sons. 2012.
  2. Antenno-fidernye i optoelektronnye ustroystva. Monografiya / Pod red. V.S. Verby i A.P. Kurochkina. M.: Radiotekhnika. 2014.
  3. Spravochnik po radiolokatsii. V 2-kh knigakh / Pod red. M.I. Skolnika: Per. s angl. pod obshchey red. V.S. Verby. M.: Tekhnosfera. 2014.
  4. Modern antenna handbook / Ed. by C.A. Balanis. John Wiley & Sons. 2008.
  5. Ponomarev L.I., Stepanenko V.I. Skaniruyushchie mnogochastotnye sovmeshchennye antennye reshetki. M.: Radiotekhnika. 2009.
  6. Shafai L.L., Chamma W.A., Barakat M., et al. Dual-band dual-polarized perforated microstrip antennas for SAR applications. IEEE Transactions on Antennas and Propagation. 2000. V. 48. № 1. P. 58–66.
  7. Pozar D.M., Targonski S. A shared-aperture dual-band dual polarized microstrip array. IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 2. P. 150–157.
  8. Bagno D.V., Balina I.A., Grinev A.Yu., Zaykin A.E. Dvukhdiapazonnyy shchelevoy metallodielektricheskiy neodnorodnyy izluchatel' dlya fazirovannykh antennykh reshetok. Antenny. 2013. № 4. S. 22–27. [in Russian]
  9. Qin F., Gao S., Luo Q., et al. A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 7. P. 2914–2922.
  10. Foged L.J., Giacomini A., Saccardi F., et al. Miniaturized array antenna using artificial magnetic materials for satellite-based AIS system. IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 4. P. 1276–1287.
  11. Munk B.A. Frequency-selective surfaces: Theory and design. N.Y.: John Wiley & Sons. 2000.
  12. Theory and phenomena of metamaterials / Ed. by F. Capolino. CRC Press. 2009.
  13. Applications of metamaterials / Ed. by F. Capolino. CRC Press. 2009.
  14. Sievenpiper D.F., Zhang L., Broas R.F.J., Alexopolous N.G., Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques. 1999. V. 57. № 11. 1999. P. 2059–2074.
  15. Grinev A.Yu., Kurochkin A.P., Volkov A.P. Nizkoprofil'naya razvyazannaya antennaya sistema na osnove poverkhnosti s vysokim impedansom. Antenny. 2014. № 9. S. 4–11. [in Russian]
  16. Grinev A.Yu., Il'in E.V., Volkov A.P. Raschet parametrov poverkhnosti s vysokim impedansom dlya nizkoprofil'nykh vibratornykh antenn. Antenny. 2012. № 10. S. 57–62. [in Russian]
  17. Izmaylov A.A, Volkov A.P. Nizkoprofil'naya shirokopolosnaya antennaya sistema s uluchshennoy formoy diagrammy napravlennosti na osnove magnitnogo provodnika konechnogo razmera. Trudy MAI. 2017. № 94. [in Russian]
  18. Tretyakov S. Analytical modeling in applied electromagnetics. Artech House. 2003.
  19. Luukkonen O., Simovski C., Granet G., et al. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 6. P. 1624–1632.
  20. Volkov A.P. Periodicheskie SVCh kompozitnye struktury v bortovykh antennykh sistemakh. Diss. … kand. tekhn. nauk. MAI (NIU). M. 2017. URL: https://www.mai.ru/events/defence/index.php?ELEMENT_ID=76551)
Date of receipt: 16 апреля 2019 г.