350 rub
Journal Antennas №2 for 2019 г.
Article in number:
High-precision method of calculating and optimization of noise characteristics of broadband photoreceivers
Type of article: scientific article
DOI: 10.18127/j03209601-201902-07
UDC: 621.396.677:621.378.8:621.3.049
Authors:

D. F. Zaitsev – Dr.Sc. (Eng.), Chief Designer on Radio Photonics,

JSC “Concern Radio Electronic Technologies”

E-mail: zaysev@yandex.ru

Abstract:

The analytical high-precision method of calculation and optimization of noise characteristics and sensitivity of broadband preamplifiers on bipolar transistors of photoreceivers for analog and digital modules, based on application of intensifying quality parameter, invariant to a current of the emitter has been considered. It has been shown that with the minimal changes the given method is suitable for calculations and optimization of superbroadband preamplifiers of photoreceivers modules based on modern heterojunction bipolar transistors (HBT).

On the basis of comparison of the theoretical and experimental researches with results of other authors, it is possible to draw a conclusion on its applicability for engineering calculations and optimization of noise characteristics and sensitivity of photoreceivers modules of analog and digital optical signals. This is a simple method in the frequency range up to 10 GHz inclusive, i.е. up to X-range of wavelengths.

The developed method considering the basic frequency-regime dependences is a cheap alternative to another, high-expensive methods and can be applied when designing various fiber-optical systems.

Pages: 57-65
References
  1. Draa M.N., Bloch J., Chen D., Scott D.C., Chen N., Chen S.B.,Yu X., Chang W.S., Yu P.K.L. Novel directional coupled waveguide photodiode – concept and preliminary results // Optics Express. 2010. V. 18. № 17. P. 17729–17735.
  2. Rouvalis E., Renaud C.C., Moodie D.G., Robertson M.J., Seeds A.J. Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation // Optics Express. 2010. V. 18. № 11. P. 11105–11110.
  3. Bakhrakh L.D., Zajtsev D.F. Fazirovannye antennye reshetki na osnove raspredelennykh opticheskikh antennykh modulej // Doklady AN. 2004. T. 394. № 4. S. 465–468.
  4. Zajtsev D.F. Analogovaya nanofotonika v apparature AFAR // Antenny. 2007. № 9. S. 60–66.
  5. Bakhrakh L.D., Zajtsev D.F. Perspektivy primeneniya analogovoj fotoniki v radiolokatsionnykh sistemakh // Antenny. 2004. № 8–9. S. 134–138.
  6. Shiu K.-T., Agashe S.S., Forrest S.R. A simple monolithically integrated optical receiver consisting of an optical preamplifier and a pin photodiode // IEEE Photonics Technology Letters. 2006. V. 18. № 8. P. 956–958.
  7. Fukuyama H., Sano K., Murata K., Kitabayashi H., Yamane Y., Enoki T., Sugahara H. Photoreceiver module using an InP HEMT transimpedance amplifier for over 40 Gb/s // IEEE Journal of Solid-State Circuits. 2004. V. 39. № 10. P. 1690–1696.
  8. Weiner J.S., Lee J.S., Leven A., Baeyens Y., Houtsma V., Georgiou G., Yang Y., Frackoviak J., Tate A., Reyes R., Kopf R.F., Sung W.-J., Weimann N.G., Chen Y.-K. An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth // IEEE Journal of SolidState Circuits. 2004. V. 39. № 10. P. 1720–1723.
  9. Pavlidis D., Valizadeh P., Hsu S.H. AlGaN/GaN high electron mobility transistor (HEMT) reliability // Proc. 13-th GAAS Symposium. Paris. 2005. P. 265–268.
  10. Iwamoto M., Root D. Agilent HBT model: Overview // Proc. Compact Model Council Meeting. 2006. P. 1–46.
  11. Zajtsev D.F. Optimizatsiya shumovykh kharakteristik predusilitelej dlya bystrodejstvuyushchikh fotopriemnikov volokonno-opticheskikh linij svyazi // Radiotekhnika i elektronika. 1985. T. KhKhKh. № 8. S. 1630–1633.
  12. Zajtsev D.F. Analiticheskij raschet i optimizatsiya chuvstvitel'nosti bystrodejstvuyushchikh tsifrovykh i analogovykh fotopriemnykh ustrojstv dlya volokonno-opticheskikh linij svyazi // Radiotekhnika i elektronika. 1988. T. KhKhKhIII. № 3. S. 612–619.
  13. Zajtsev A.A., Mirkin A.I., Mokryakov V.V. i dr. Poluprovodnikovye pribory. Tranzistory maloj moshchnosti. Spravochnik. Izd. 2-e / Pod. red. A.V. Golomedova. M.: Radio i svyaz'. 1994.
  14. Smith R.G., Personick S.D. Receiver design in semiconductor devices for optical communication / Ed. H. Kressel. Ch. 4. West Berlin: Springer–Verlag. 1980.
  15. Bogacki K.J. Design of a 50 GHz bandwidth DPSK compatible monolithically integrated optical receiver / Thesis dissertation for the Degree of Master of Science Electrical Engineering. North Carolina State University. Raleigh, North Carolina. 2006.
  16. Zajtsev D.F. Raschet i optimizatsiya po shumam fotopriemnykh modulej // Antenny. 2011. № 1. S. 16–26.
  17. Urick V.J., Williams K.J., McKinney J.D. Fundamentals of microwave photonics. John Wiley & Sons. 2015.
  18. Juodawlkis P.W., Plant J.J., Loh W., Missaggia L.J., Jensen K.E., O’Donnell F.J. Packaged 1.5-CTm quantum-well SOA with 0.8-W output power and 5.5-dB noise figure // IEEE Photonics Technology Letters. 2009. V. 21. № 17. P. 1208–1210.
Date of receipt: 30 октября 2018 г.