N. A. Novoselova – Ph.D. (Eng.), Associate Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev
A. S. Raevskij – Dr.Sc. (Phys.-Math.), Professor, Head of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev E-mail: raevsky_as@mail.ru
S. B. Raevskij – Honored Scientist of RF, Dr.Sc. (Eng.), Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev
G. I. Shishkov – Ph.D. (Eng.), Professor of Department of Physics and Technology of Optical Communication,
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Honorary Radio Operator of USSR
Study of the electromagnetic field distribution in a two-layer round shielded waveguide revealed the effect of a sharp increase in the field amplitude during transition from the frequency region corresponding to the propagating waves to the region of existence of complex waves (CW). This phenomenon is in many ways analogous to ordinary resonance in resonant structures both in closed shielded volumes with distributed parameters and in the oscillatory systems with lumped elements. This phenomenon is called complex resonance (CR). It differs from the usual resonance in that it manifests itself in a wide frequency range corresponding to the range of existence of CW. This feature makes it impossible to measure the Q-factor of the CR by conventional resonance methods. It has been shown that the oscillation attached to the source, that is, existing only in the presence of the latter, corresponds to CR arising in a two-layer round shielded waveguide. Q-factor calculations in the energy formulation have shown that Q-factor in the range of existence of complex waves varies within ~10%.
This opens up broad prospects for the use of CR in the construction of bandpass filters and various indicator devices. The CR phenomenon should take place in all oscillatory and waveguide structures, mathematical modeling of which leads to nonself-adjoint selfconsistent boundary value problems.
- Veselov G.I., Raevskij S.B. Sloistye metallo-dielektricheskie volnovody. M.: Radio i svyaz'. 1988.
- Raevskij A.S., Raevskij S.B. Neodnorodnye napravlyayushchie struktury, opisyvaemye nesamosopryazhennymi operatorami. M.: Radiotekhnika. 2004.
- Raevskij A.S., Raevskij S.B. Kompleksnye volny. M.: Radiotekhnika. 2010.
- Veselov G.I., Raevskij S.B., Kalmyk V.A. Issledovanie kompleksnykh voln dvukhslojnogo ekranirovannogo volnovoda // Radiotekhnika. 1980. T. 35. № 9. S. 59–62.
- Buduris M., Shelev'e P. Tsepi sverkhvysokikh chastot. M.: Sov. radio. 1979.
- Sazonov D.M., Gridin A.N., Mishustin B.A. Ustrojstva SVCh. M.: Vysshaya shkola. 1981.
- Vajnshtejn L.A. Elektromagnitnye volny. M.: Radio i svyaz'. 1988.
- A.s. № 934561 SSSR. Polosovoj fil'tr / V.A. Kalmyk, S.B. Raevskij, G.I. Veselov. 1982. Byul. № 21.
- A.s. № 1091262 SSSR. Polosovoj fil'tr / V.A. Kalmyk, S.B. Raevskij, G.I. Veselov. 1984. Byul. № 17.