O. S. Litvinov – Dr.Sc. (Phys.-Math.), Professor, Department of Physics, Bauman Moscow State Technical University
E-mail: oleglitv@mtu-net.ru
D. V. Murodyants – Student, Department of Physics, Bauman Moscow State Technical University
E-mail: dmitriy1994.94@mail.ru
V. S. Boruta – Ph.D. (Eng.), Associate Professor, Department of Physics, Bauman Moscow State Technical University
E-mail: borutav@mail.ru
B. E. Vintaykin – Dr.Sc. (Phys.-Math.), Professor, Department of Physics, Bauman Moscow State Technical University
E-mail: vintaikb@mail.ru
The neural network has been trained to control the parameters of the adaptive array antennas (AAA), which based on the given input signal, gives the values of the weight coefficients at which the AAA output produces a signal with a minimal interference component. The cases of drop of one and two uncorrelated noise on the receiving elements of the antenna with a normally falling useful signal have been considered. The dependence of the noise-to-signal ratio at the output of the AAA has been obtained depending on the angle of arrival of the interference. The AAA radiation pattern has been analyzed with this trained neural network and the nature of the dependence of the noise to signal ratio for a given trained neural network with a continuous change in the angle of arrival of the interference.
- Khajkin S. Nejronnye seti: Polnyj kurs. Izd. 2-e. M.: Vil'yams. 2008.
- Uossermen F. Nejrokomp'yuternaya tekhnika: Teoriya i praktika. M.: Mir. 1992.
- Terekhov V.A., Efimov D.V., Tyukin I.Yu. Nejrosetevye sistemy upravleniya. M.: Vysshaya shkola. 2002.
- Pistol'kors A.A., Litvinov O.S. Vvedenie v teoriyu adaptivnykh antenn. M.: Nauka. 1991.
- Gross F.B. Smart antennas for wireless communications with MATLAB. McGraw-Hill. 2005.
- Hinton G. E., Osindero S., Teh Y.W. A fast learning algorithm for deep belief nets // Neural Computation. 2006. № 18 (7). P. 1527–1554.
- Deng G., Ferris M.C. Neuro-dynamic programming for fractionated radiotherapy planning // Springer Optimization and Its Applications. 2008. V. 12. P. 47–70.
- Cybenko G.V. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals, and Systems. 1989. V. 2. P. 303–314.
- Siegelmann H.T., Sontag E.D. Analog computation via neural networks // Theoretical Computer Science. 1994. V. 131. № 2. P. 331–360.
- Cheremisin O.P. Adaptivnye algoritmy obrabotki signalov v mnogokanal'nykh priemnykh sistemakh s antennymi reshetkami // Radiotekhnika i e'lektronika. 2006. T. 51. № 9. S. 1087–1098.
- Graves A., Schmidhuber J. Offline handwriting recognition with multidimensional recurrent neural networks // Advances in Neural Information Processing Systems. 2009. V. 31. P. 545–552.
- Ciresan D.C., Meier U., Masci J., Schmidhuber J. Multi-column deep neural network for traffic sign classification // Neural Networks. 2012. V. 32. P. 333–338.