350 rub
Journal Antennas №10 for 2018 г.
Article in number:
Design of bandpass quasi-elliptic filter on cavity combline resonators for LTE frequency band
Type of article: scientific article
DOI: 10.18127/j03209601-201810-05
UDC: 621.372.543.2
Authors:

R. E. Semernya – Post-graduate student, Bauman Moscow State Technical University; Junior Research Scientist of Bauman Moscow State Technical University Research Institute, Leading Design Engineer in LLC “Radiocomp”

E-mail: semernyare@gmail.com

S. L. Chernyshev – Dr.Sc. (Eng.), Professor, Bauman Moscow State Technical University

A. R. Vilenskij – Ph.D. (Eng.), Associate Professor, Bauman Moscow State Technical University; Leading Engineer, Samsung Research Institute Russia

V. V. Kuvshinov – Ph.D. (Eng.), Head of Department of Microwave Filters, LLC “Radiocomp”

Abstract:

The design procedure of quasi-elliptic passband filters for the LTE band (2170–2200 MHz) with high 3G band rejection has been presented. The general coupling matrix has been synthesized by applying a dedicated recursive technique. We propose a practical design for electrical coupling enhancement between air cavity combline resonators using a suspended substrate with printed conducting strips. First, scattering parameters of the designed filters have been obtained during simulations in Ansys HFSS. Next, a filter prototype has been fabricated and measured. Experimental and simulated results demonstrate perfect agreement. Finally, we have explored temperature stability of filter electrical performance.

Pages: 44-53
References
  1. Semernya R.E., Vilenskij A.R., Chernyshev S.L., Litun V.I. Mikropoloskovyj polosovoj fil'tr s kvaziellipticheskoj kharakteristikoj na korotkozamknutykh rezonatorakh // Radiolokatsiya, navigatsiya, svyaz'. 2016. S. 1266–1272.
  2. Semernya R.E., Vilenskij A.R., Litun V.I. Razrabotka mikropoloskovykh fil'trov s primeneniem metoda momentov v spektral'noj oblasti // Radiolokatsiya, navigatsiya, svyaz'. 2014. S. 720–727.
  3. Ting S.W., Tam K., Martins R.P. Compact microstrip quasi-elliptic bandpass filter using open-loop dumbbell shaped defected ground structure // Microwave Symposium Digest. IEEE MTT-S International. 2006. P. 527–530.
  4. Belyaev B.A. i dr. Miniatyurnyj polosno-propuskayushchij SVCh-fil'tr s podavleniem urovnya pomekh bolee 100 dB v shirokoj polose zagrazhdeniya // Pis'ma v Zhurnal tekhnicheskoj fiziki. 2013. T. 39. № 15. S. 47–55.
  5. Arinin O.V., Aristarkhov G.M. Sverkhminiatyurnye vysokoizbiratel'nye fil'try SVCh na osnove shpilechnykh rezonatorov, nagruzhennykh na ukorachivayushchie kondensatory // Fundamental'nye problemy radioelektronnogo priborostroeniya. 2016. T. 16. № 5. S. 150–154.
  6. Bunin A.V. i dr. Polosno-propuskayushchie fil'try Ku-diapazona na dielektricheskikh rezonatorakh. Bazovaya model' // Elektronnaya tekhnika. Ser. 1: SVCh-tekhnika. 2011. № 2. S. 4–12.
  7. Hoft M. et al. Compact combline filter with improved cross coupling assembly and temperature compensation // Microwave Conference. APMC 2006. Asia-Pacific. 2006. P. 781–784.
  8. Cameron R.J., Kudsia C.M., Mansour R. Microwave filters for communication systems. John Wiley & Sons. 2015.
  9. Cameron R.J. General coupling matrix synthesis methods for Chebyshev filtering functions // IEEE Trans. Electron. 1999. V. 47. № 4. P. 433–442.
  10. Hong J.S.G., Lancaster M.J. Microstrip filters for RF/microwave applications. John Wiley & Sons. 2004.
  11. Mattej D.L. Fil'try SVCh, soglasuyushchie tsepi i tsepi svyazi. M.: Svyaz'. 1971.
  12. Tkadlec R., Macchiarella G. Pseudoelliptic combline filter in a circularly shaped tube // 2018 IEEE/MTT-S International Microwave Symposium-IMS. IEEE. 2018. P. 1099–1102.
  13. Wang Y., Yu M. True inline cross-coupled coaxial cavity filters // IEEE Trans. on Microwave Theory and Techniques. 2009. V. 57. № 12. P. 2958–2965.
  14. Sirci S. et al. Quasi-elliptic filter based on SIW combline resonators using a coplanar line cross-coupling // Microwave Symposium (IMS). 2015 IEEE MTT-S International. 2015. P. 1–4.
Date of receipt: 27 сентября 2018 г.