350 rub
Journal Antennas №9 for 2017 г.
Article in number:
Printed wideband antenna array element with air cavity
Type of article: scientific article
UDC: 621.396.677
Authors:

A. R. Vilenskiy – Ph.D. (Eng.), Associate Professor of Bauman Moscow State Technical University; Senior Research Scientist of

Bauman Moscow State Technical University Research Institute of Radio Electronic Technology

V. I. Litun – Senior Lecturer of Bauman Moscow State Technical University; Senior Research Scientist of Bauman Moscow State Technical University Research Institute of Radio Electronic Technology E-mail: v.i.litun@bmstu.ru

K. V. Lyulyukin – Post-graduate Student, Bauman Moscow State Technical University; Junior Research Scientist of Bauman Moscow

State Technical University Research Institute of Radio Electronic Technology

V. N. Mitrokhin – Dr.Sc. (Eng.), Professor of Bauman Moscow State Technical University; Chief Research Scientist of Bauman Moscow State Technical University Research Institute of Radio Electronic Technology

Abstract:

The article presents some results of wideband printed phased antenna array element development for C-band. The array has a regular 2D skew-angle lattice. The element design exploits a double-resonant printed patch radiator fabricated on a dielectric substrate with a cavity in a metallic base. It has been shown that the chosen structure is simultaneously characterized by a reduced level of elements mutual coupling and possesses a wideband input matching performance during a sectorial beam steering. Some results of the finite array fragment experimental study have been demonstrated.

Pages: 13-25
References
  1. Voskresenskij D.I. i dr. Antenny i ustrojstva SVCh. Proektirovanie fazirovannykh antennykh reshetok. M.: Radiotekhnika. 2012.
  2. Volakis J.L. Antenna engineering handbook. 4th ed. Mc Grow Hill. 2007.
  3. Kumar G., Ray K.P. Broadband microstrip antennas. Artech House. 2003.
  4. Volakis J., Chen C.-C., Fujimoto K. Small antennas: miniaturization techniques & applications. McGraw-Hill. 2010.
  5. Lau K.L., Luk K.M., Lee K.F. Wideband U-slot microstrip patch antenna array // IEE Proc. Antennas, Microwaves and Propagation. 2001. V. 148. № 1. P. 41–44.
  6. Pozar D., Schaubert D. Scan blindness in infinite phased arrays of printed dipoles // IEEE Trans. on Antennas and Propagation. 1984. V. 32. № 6. P. 602–610.
  7. Panchenko B.A. i dr. E'lektrodinamicheskij raschet kharakteristik poloskovykh antenn. M.: Radio i svyaz'. 2002.
  8. Bhattacharyya A.K. Phased array antennas – Floquet analysis, synthesis, BFNs and active array systems. Hoboken, NJ: John Wiley & Sons, Inc. 2006.
  9. Davidovitz M. Extension of the E-plane scanning range in large microstrip arrays by substrate modification // IEEE Microwave and Guided Wave Letters. 1992. V. 2. № 12. P. 492–494.
  10. Zavosh F., Aberle J.T. Infinite phased arrays of cavity-backed patches // IEEE Trans. on Antennas and Propagation. 1994. V. 42. № 3. P. 390–398.
  11. Awida M.H., Fathy A.E. Design guidelines of substrate-integrated cavity-backed patch antennas // IET Microwave, Antennas and Propagation. 2012. V. 6. № 2. P. 151–157.
  12. Awida M.H., et al. Substrate-integrated cavity-backed patch arrays: a low-cost approach for bandwidth enhancement // IEEE Trans. on Antennas and Propagation. 2011. V. 59. № 4. P. 1155–1163.
  13. Lyulyukin K.V., Litun V.I., Rogozin A.A. Shirokopolosnyj pechatnyj izluchatel' fazirovannoj antennoj reshetki s polost'yu v metallicheskom osnovanii // Materialy 25-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo 2015). 2015. Sevastopol': Sevastopol'skij nac. tekhn. un-t. T. 1. S. 457–458.
  14. Amitej N., Galindo V., Vu Ch. Teoriya i analiz fazirovannykh antennykh reshetok. M.: Mir. 1974.
  15. Vilenskij A.R., Chernyshev S.L. Issledovanie balansnykh pechatnykh shchelevykh antenn begushchej volny v sostave shirokopolosnykh antennykh reshetok Kh-diapazona // Radiotekhnika. 2013. № 11. S. 118–122.
  16. Ludwig A.C. The definition of cross polarization // IEEE Trans. on Antennas and Propagation. 1973. V. 11. № 1. P. 116–119.
  17. Yang F., Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications // IEEE Trans. on Antennas and Propagation. 2003. V. 51. № 10. P. 2936–2946.
Date of receipt: 24 июля 2017 г.