350 rub
Journal Antennas №7 for 2017 г.
Article in number:
The model of radar images of objects analogs of anthropogenic landscapes and infrastructure according to thermal tomography
Type of article: scientific article
UDC: 536.2, 528.8
Authors:

I. N. Ishchuk – Dr.Sc. (Eng.), Associate Professor, Head of Department, Air Force Academy n.a. Professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh)

E-mail: boerby@rambler.ru

K. V. Postnov – Post-graduate Student, Air Force Academy n.a. Professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh) E-mail: konstantin_postnov_88@mail.ru

Yе. А. Stepanov – Post-graduate Student, Air Force Academy n.a. Professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh) E-mail: stepanovevgeniy@mail.ru

A. M. Filimonov – Post-graduate Student, Air Force Academy n.a. Professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh) E-mail: flyfil87@mail.ru

Abstract:

The article presents a technique to obtain radar images of the Earth surface by converting thermal tomography image based on the functional dependence of the dielectric constant materials on their thermal properties. Representation of bond absorption coefficient of electromagnetic waves and thermal insulator characteristics.

Pages: 33-39
References
  1. Korennoj A.V., Lepyoshkin S.A., Kadochnikov A.P., Yashchenko E.A. Modelirovanie radiolokacionnykh izobrazhenij na osnove stokhasticheskikh differencial'nykh uravnenij v chastnykh proizvodnykh // Radiotekhnika. 2016. №10. S. 134–143.
  2. Lobunec L.V., Reshetko A.D. Cifrovoe modelirovanie radioizobrazhenij ob''ektov lokacii s sherokhovatoj poverkhnost'yu // Nauchnyj vestnik MGTU GA. Radiofizika i radiotekhnika. 2001. № 39. S. 45–54.
  3. Fesenko A.I., Ishchuk I.N., Shtejnbrekher V.V. Metody i pribory tekhnicheskogo diagnostirovaniya teplovoj zashchity i radiopogloshchayushchikh pokrytij aviacionno-kosmicheskikh apparatov. M.: Mashinostroenie. 2008.
  4. Ishchuk I.N., Filimonov A.M., Stepanov E.A., Postnov K.V. Sposob klassifikacii stacionarnykh i kvazistacionarnykh ob''ektov po dannym dinamicheskikh infrakrasnykh izobrazhenij, poluchaemykh kompleksami s bespilotnymi letatel'nymi apparatami // Radiotekhnika. 2016. № 10. S. 145–153.
  5. Ishchuk I.N., Parfiriev A.V. The reconstruction of a cuboid of infrared images to detect hidden objects. Part 1. A solution based on the coefficient inverse problem of heat conduction // Measurement Techniques. 2014. № 56 (10). P. 1162–1166.
  6. Ishchuk I.N., Parfiriev A.V. The reconstruction of a cuboid of infrared images to detect hidden objects. Part 2. A method and apparatus for remote measurements of the thermal parameters of isotropic materials // Measurement Techniques. 2014. № 57 (1). P. 74–78.
  7. Nishar A., Richards S., Breen D., Robertson J., Breen B. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei–Tauhara geothermal field // Taupo, New Zealand. 2016. V. 86. P. 1256–1264.
  8. Jiayi M., Chen Ch., Chang L., Jun H. Infrared and visible image fusion via gradient transfer and total variation minimization // Information Fusion. 2016. V. 31. P. 100–109.
  9. Balageas D., Maldague X., Burleigh D., Vavilov V.P., Oswald-Tranta B., Roche J.M., Pradere C., Carlomagno G.M. Thermal (IR) and other NDT techniques for improved material inspection // Journal of nondestructive evaluation. 2016. P. 1–17.
  10. Landau L.D., Lifshic E.N. E'lektrodinamika sploshnykh sred. M.: Gostekhizdat. 1957.
  11. Penskoj A.S., Mal'cev N.I., Pustovalov A.P. Izmereniya koe'fficienta otrazheniya vody v SVCh-diapazone // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. T. 7. № 3 (106). S. 91–95.
Date of receipt: 12 апреля 2017 г.