350 rub
Journal Antennas №11 for 2017 г.
Article in number:
Representation of the field components on the surface of an irregular region in calculation of the transmission characteristics of smoothly irregular non-axial waveguide transitions on the basis of the method of integral equations
Type of article: scientific article
UDC: 621.372.831
Authors:

S. M. Garanin – Postgraduate Student, Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev

E-mail: physics@nntu.ru

I. N. Danilov – Ph.D. (Eng.), Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Senior Research Scientist of FRPC “Measuring System Research Institute n.a. Yu.Ye. Sedakov” (Nizhny Novgorod)

N. A. Novoselova – Ph.D. (Eng.), Associate Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev

S. B. Raevskij – Honored Scientist of RF, Dr.Sc. (Eng.), Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev

Abstract:

The main attention in this paper is given to the representation of the field components on the conductive surface of the matching waveguide transition. This approach allows us to calculate the shape of the wave surface of the electromagnetic wave propagating in the irregular region and the transition transfer characteristics. The computational algorithm is based on the method of integral equations, which is based on one of the fundamental relations of electrodynamics, which is the integral form of the Lorentz lemma. The method of integral equations is applicable, both for calculating the dispersion characteristics of various irregular guiding structures, and for solving a wide range of internal diffraction problems of electrodynamics.

Pages: 50-62
References
  1. Katsenelenbaum B.Z. Teoriya neregulyarnykh volnovodov s medlenno menyayushchimisya parametrami. M.: AN SSSR. 1961.
  2. Majstrenko V.K., Radionov A.A., Raevskij S.B. O primenenii metoda chastichnykh oblastej dlya rascheta volnovodov so slozhnym poperechnym secheniem // E'lektrodinamika i tekhnika SVCh i KVCh. 1994. № 4. S. 87–92.
  3. Samarskij A.A., Nikolaev E.S. Metody resheniya setochnykh uravnenij. M.: Nauka. 1978.
  4. Segerlind L. Primenenie metoda konechnykh e'lementov. M.: Mir. 1979.
  5. Belov Yu.G., Raevskij S.B. O raschete gofrirovannykh volnovodov // Izv. vuzov SSSR. Ser. Radiofizika. 1975. T. 8. № 10. S. 1523–1527.
  6. Ilarionov Yu.A., Raevskij S.B., Smorgonskij V.Ya. Raschet gofrirovannykh i chastichno zapolnennykh volnovodov. M.: Sov. radio. 1980.
  7. Raevskij S.B. Metod integral'nykh uravnenij dlya rascheta neregulyarnykh volnovodov // Fizika volnovykh protsessov i radiotekhnicheskikh sistem. 2009. T. 12. № 3. S. 34–37.
  8. Danilov I.N., Majstrenko V.K. Metodika rascheta kharakteristik peredachi plavnykh perekhodov mezhdu dvumya pryamougol'nymi e'kranirovannymi volnovodami, osnovannaya na integral'nom sootnoshenii Lorentsa // Radiotekhnika i e'lektronika. 2015. T. 60. № 2. S. 149–165.
  9. Garanin S.M., Danilov I.N., Novoselova N.A. Raschet plavnykh perekhodov mezhdu pryamougol'nymi nesoosnymi volnovodami // Antenny. 2017. № 4. S. 55–61.
  10. Vajnshtejn L.A. E'lektromagnitnye volny. M.: Radio i svyaz'. 1988.
  11. Amosov A.A., Dubinskij Yu.A., Kopchenova N.V. Vychislitel'nye metody dlya inzhenerov. M.: Vysshaya shkola. 1994.
Date of receipt: 27 августа 2017 г.