350 rub
Journal Antennas №11 for 2017 г.
Article in number:
Mathematical model of radioelectronic environment assessment and algorithm of working frequency selection in the group of radioelectronic means
Type of article: scientific article
UDC: 537.86; 621.396.96
Authors:

 

N. S. Akinshin – Dr.Sc. (Eng.), Professor, JSC Central Design Bureau of Apparatus Engineering (Tula) E-mail: cdbae@cdbae.ru

R. P. Bystrov – Dr.Sc. (Eng.), Professor, Leading Research Scientist, Kotel'nikov Institute of Radio Engineering and Electronics of RAS (Moscow)

E-mail: rudolf@cplire.ru

 

O. V. Esikov – Dr.Sc. (Eng.), Professor, JSC Central Design Bureau of Apparatus Engineering (Tula)

V. L. Rumyantsev – Dr.Sc. (Eng.), Professor, JSC Central Design Bureau of Apparatus Engineering (Tula)

Abstract:

A mathematical model of defining of electromagnetic compatibility of radio electronic means group has been suggested. On the basis of this model the problem of selecting of radio electronic means operation frequency values has been formalized. To solve the formalized problem the swarm-of-particles method algorithm has been offered and experimentally tested. This algorithm allows obtaining quasioptimal solution in the acceptable time and it has low computational complexity.

Pages: 39-43
References
  1. Koziratskij Yu.L., Ivantsov A.V. Algoritm operativnoj otsenki radioe'lektronnoj obstanovki v interesakh obespecheniya e'lektromagnitnoj sovmestimosti // Tekhnologii E'MS. 2015. №2 (53). S. 18–21.
  2. Knyazev A.D. E'lementy teorii i praktiki e'lektromagnitnoj sovmestimosti radioe'lektronnykh sredstv. M.: Radio i svyaz'. 1984.
  3. Modeli informatsionnogo konflikta sredstv poiska i obnaruzheniya / Pod red. Yu.L. Koziratskogo. M.: Radiotekhnika. 2013.
  4. Upravlenie radiochastotnym spektrom i e'lektromagnitnoj sovmestimost'yu radiosistem / Pod red. M.A. Bykhovskogo. M.: E'ko-Trendz. 2006.
  5. Il'yushko S.G. Analiz i metodika rascheta e'lektromagnitnoj sovmestimosti v sistemakh svyazi, radiolokatsii i televideniya. Ucheb. posobie. Petropavlovsk-Kamchatskij: KamchatGTU. 2007.
  6. Andreev A.V., Rumyantsev V.L., Esikov O.V. Otsenka e'ffektivnosti adaptivnoj skhemy reproduktsii v geneticheskom algoritme pri reshenii zadachi vybora rabochikh chastot radiotekhnicheskikh sredstv sistem upravleniya vozdushnym dvizheniem// Materialy Vseross. konf. «Radioe'lektronnye sredstva polucheniya, obrabotki i vizualizatsii informatsii». Moskva. 2015. S. 117–121.
  7. Sergienko I.V., Gulyanitskij L.F., Sirenko S.I. Klassifikatsiya prikladnykh metodov kombinatornoj optimizatsii / Kibernetika i sistemnyj analiz. 2009. № 5. S. 71–83.
  8. Karpenko A.P. Populyatsionnye algoritmy global'noj poiskovoj optimizatsii. Obzor novykh i maloizvestnykh algoritmov // Informatsionnye tekhnologii. 2012. № 7. S. 13–15.
  9. Gladkov L.A., Kurejchik V.V., Kurejchik V.M. Geneticheskie algoritmy. M.: FIZMATLIT. 2006.
  10. Rutkovskaya D., Pilin'skij M., Rutkovskij L. Nejronnye seti, geneticheskie algoritmy i nechetkie sistemy / Per. s pol. I.D. Rudinskogo. M.: Goryachaya liniya–Telekom. 2004.
  11. Holland J.H. Adaptation in natural and artificial systems. 2nd Ed. Cambridge, MA: MIT Press. 1992.
  12. Eberhart R.C., Kennedy J. Particle swarm optimization // Proc. IEEE Intern. Conf. on Neural Networks. Piscataway (NJ): IEEE Service Center. 1995. V. 4. P. 1942–1948.
  13. Clerc M. Particle swarm optimization. Hoboken (NJ): Wiley-Interscience. 2006.
  14. Bastos-Filho C.J.A., Lima-Neto F.B., Lins A., Nascimento A., Lima M. Fish school search // Nature-Inspired Algorithms for Optimisation. SCI. Springer, Heidelberg. 2009. V. 193. P. 261–277.
  15. Cavalcanti-J’unior G.M., Bastos-Filho C.J.A., Lima-Neto F.B., Castro R.M.C.S. A hybrid algorithm based on fish school search and particle swarm optimzation for dynamic problems / Proceedings of the International Conference on Swarm Intelligence. 2011. SpringerVerlag, Berlin, Heidelberg. P. 543–552.
Date of receipt: 15 июля 2017 г.