350 rub
Journal Antennas №9 for 2016 г.
Article in number:
Dual Polarized Low-Profile P band Radiator of AESA
Authors:
A.P. Volkov - Post-graduate Student, Moscow Aviation Institute (National Research University); Engineer, JSC «Corporation «Vega» (Moscow). E-mail: tkoh@yandex.ru K.V. Kozlov - Head of Laboratory, JSC «Corporation «Vega» (Moscow). E-mail: mail@vega.su G.S. Asinovsky - Design Engineer , JSC «Corporation «Vega» (Moscow). E-mail: mail@vega.su V.R. Mezin - Student, Moscow Aviation Institute (National Research University); Engineer, JSC «Corporation «Vega» (Moscow). E-mail: vmezin@icloud.com
Abstract:
Airborne A/C and space earth survey systems use antenna synthetic aperture radars that operate in several frequency bands, including P band (70 cm) of wave lengths. The height of antenna profile is one of the important parameters both in aircraft and spaceborne radars. It is important to maintain the carrier aerodynamics in the aircraft equipment, and in the spaceborne equipment - for close-together arrangement inside radome in the launch of space vehicle on orbit. The solution of the whole number of practical tasks requires the use of low-profile dual polarized antenna radiators with high decoupling in polarization. This task can be solved using structures with high impedance surface properties - artificial magnetic conductor (AMC) and electromagnetic bandgap structure (EBG). The use of artificial surface with high surface impedance properties made it possible to design low profile antenna system with suffi-ciently high decoupling among polarization channels. The developed antenna has low VSWR values (no more than 1,6) and decoupling among polarization channels (no more than −30 dB) in operational frequency band (435±30 MHz) at height 38 mm (0,05 λ0), while in traditional solution as a dipole above metallic surface the height would be 172 mm (0,25 λ0). For verifying the results a radiator was fabricated and tested. The measured characteristics have good coincidence with the simulation characteristic.
Pages: 96-101
References

 

  1. Radiolokacionnye sistemy zemleobzora kosmicheskogo bazirovanija / Pod red. V.S. Verby. M.: Radiotekhnika. 2010. S. 680.
  2. Traektorija poleta. CKB-17, NII-17, MNIIP, OAO «Koncern «Vega» / Pod red. V.S. Verby. M.: Oruzhie i tekhnologii. 2005. 252 c.
  3. Sievenpiper D.F., Zhang L., Broas R.F.J., Alexopolous N.G., Yablonovitch E. High-impedance electromagnetic surfaces with a forbiden frequency band // IEEE Transactions on microwave theory and techniques. 1999. V. 57. № 11. P. 2059−2074.
  4. Sievenpiper D.F. Artificial impedance surfaces for antennas // Modern antenna handbook / Ed. C.A. Balanis. John Wiley & Sons. 2008. P. 737−777.
  5. Yang F., Rahmat-Samii Y. Electromagnetic band gap structures in antenna engineering. Cambridge University Press. 2009. P. 266.
  6. Engheta N., Ziolkowski R.W. Metamaterials: physics and engineering exploration. John Wiley & Sons. 2006. 414 p.
  7. Grinev A.JU., Kurochkin A.P., Volkov A.P. Nizkoprofilnaja razvjazannaja antennaja sistema na osnove poverkhnosti s vysokim impedansom // Antenny. 2014. № 9. S. 4−11.
  8. Tretyakov S. Analytical modeling in applied electromagnetics. Artech House. 2003. 272 p.
  9. Luukkonen O., Simovski C., Granet G., Goussetis G., Lioubtchenko D., Raisanen A.V., Tretyakov S. Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches // IEEE Trans. Antennas Propagat. 2008. V. 56. № 6. P. 1624−1632.
  10. Grinev A.JU., Ilin E.V., Volkov A.P. Raschet parametrov poverkhnosti s vysokim impedansom dlja nizkoprofilnykh vibratornykh antenn // Antenny. 2012. № 10. S. 57−62.
  11. Yang F., Rahmat-Samii Y. Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications // IEEE Trans. Antennas Propagat. 2003. V. 51. № 10. P. 2691−2703.
  12. Grinev A.JU. CHislennye metody reshenija prikladnykh zadach ehlektrodinamiki. M.: Radiotekhnika. 2012. 336c.
  13. Foged L.J., Giacomini A., Saccardi F. et. all. Miniaturized Array Antenna Using Artificial Magnetic Materials for Satellite-Based AIS System// IEEE Trans. Antennas Propagat. 2015.V. 63. № 4. P. 1276−1287.
  14. Gribanov A.N., Ilin E.V., Zajjkin A.E., Volkov A.P. Modelirovanie fazirovannykh antennykh reshetok konechnykh razmerov iz volnovodnykh i pechatnykh izluchajushhikh ehlementov // Antenny. 2013. № 4. S. 9−21.