350 rub
Journal Antennas №9 for 2016 г.
Article in number:
Characteristics of a Vivaldi antenna with corrugated edges
Authors:
V.F. Los - - Ph. D. (Phys.-Math.), Senior Research Scientist, Leading Research Scientist, JSC «Corporation «Vega» (Moscow). E-mail: mail@vega.su V.R. Mezin - Student, Moscow Aviation Institute (National Research University); Technician , JSC «Corporation «Vega» (Moscow). E-mail: mail@vega.su
Abstract:
Appearance of solid-state oscillators with a subnanosecond duration is stimulated of interest to a development of radars with ultrashort videopulse probing signals. A using in radars of such signals make it possible substantially a enlarge their data characteristics. Particularly. low-frequency parts baseband spectrum of such signals (about some hundreds of MHz) contain a notable value of their power, which is less decayed in mediums with a loss. A this circumstance permit to detect of objects under vegetation covers or un-derlying surfaces/ Antenna systems of such perspective radars in the form of antenna arrays (AA) can to have of ultrawideband radiation characteristics, corresponding to a probing signal spectrum. If a main lobe of AA must to scan, then a partial radiation pattern of AA ele-ments must corresponding to a specified a scan-sector of scanning angles. Vivaldi antennas may be of ultrawideband antenna elements of such AA. A ratio of upper frequency to lower frequency of working band such elements is about ten. At that have to notice what the perfection of a antenna feed scheme broaden working band mainly aside of upper frequencies, whereas a decrease of a lower frequencies is achieved usually only at the expense of the aperture growth. The increase of antenna overall dimensions is always extremely undesirable, particularly for air-borne radars. Therefore a search of new form Vivaldi antennas, which have improved characteristics in a low-frequency domain without of a aperture growth, is important. By numerically calculations are proved what a Vivaldi antenna with corrugated edges may have improved low-frequency characteristics without an aperture growth. In article is considered Vivaldi antennas with six forms of corrugated edges and for every of fofmsis determined of the standing-wave ratio in working band and radiation patterns in main planes. It is determined what better values of a standing-wave ratio haven antennas with rectangular and exponential slots in edges. A detail optimization of a slot dimensions not be carry ouy. Results of a antenna characteristics modeling is represented in the graphical forms and showe what presence in Vivaldi antennas of corrugated edges is likewise a some increase of aperture dimension, but widths of radiation patterns practically not decreased. It is given numerical results of Vivaldi antenna characteristics/ Results are represented in graphical forms.
Pages: 48-56
References

 

  1. Cerny P., Nevrli J., Mazanek M. Optimization of tapered slot Vivaldi antenna for UWB application // Proc. of 19th Int. Conf. Appl. Electromagn. Commun. 2007. 1−4.
  2. Reid E.W., Ortiz-Balbuena L., Ghadiri A. et al. A 324-element Vivaldi antenna array for radioastronomy instrumentation // IEEE Trans. on Ant. and Propag. 2012. V. 61. № 1. P. 241−249.
  3. Shao J.J., Fang G.Y., Ji Y.C. et al. A novel compact tapered-slot antenna for GPR applications // IEEE Antennas Wireless Propag. Lett. 2013. V. 12. P. 972−975.
  4. Abbosh A.M. Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance // IEEE Antennas Wireless Propag. Lett. 2009. V. 8. P. 690−692.
  5. Milligan T.A. Modern antenna design. 2nd edition. Wiley-Interscience. 2005.
  6. Janaswamy R., Schaubert D.H. Analysis of the tapered slot antenna // IEEE Trans. on Ant. and Propag. 1987. V. 35. № 9. P. 1058−1065.
  7. Yngvesson K.S., Schaubert D.H., Korzeniowski T.L., Kollberg E.L., Thungren T., Johansson J.F. Endfire tapered slot antennas on dielectric substrates // IEEE Trans. on Ant. and Propag. 1985. V. 33. № 12. P. 1392−1400.
  8. Shin J., Schaubert D.H. A parameter study of stripline-fed Vivaldi notch antenna arrays // IEEE Trans. on Ant. and Propag. 1999. V. 47. № 5. P. 879−886.
  9. Simons R.N., Dib N.I., Lee R.Q., Katehi L.P.B. Integrated uniplanar transition for linearly tapered slot antenna // IEEE Trans. on Ant. and Propag. 1995. V. 43. № 9. P. 998−1002.
  10. Leverich W.K., Wu X.-D., Chang K. FET active slotline notch antennas for quasi-optical power combining // IEEE Trans. on Microwave Theory and Techniques. 1993. V. 41. № 9. P. 1515−1517.
  11. Bolov R.B.,Kondrateva A.P.,Kurochkin A.P.,Los V.F.,Privalova T.JU., JUkhanov JU.V. Sverkhshirokopolosnye izluchateli dlja skanirujushhejj videoimpulsnojj antennojj reshetki // Antenny. 2010. № 2(60). S. 25−30.
  12. JUkhanov JU.V., Bolov R.B., Privalova T.JU., Kondrateva A.P., Kurochkin A.P., Los V.F. KHarakteristiki izluchatelejj «Vivaldi» v sostave antennojj reshetki // Ultrawideband and Ultrashort Impulse Signals. 6−10 September. 2010. Sevastopol. Ukraine.
  13. Janaswamy R. An accurate moment method model for the tapered slot antennas // IEEE Trans. on Ant. and Propag. 1989. V. 35. № 12. P. 1523−1528.
  14. Chio T.-H. and Schaubert D.H. Parameter study and design of wide-band widescant dual-polarized tapered slot antenna arrays // IEEE Trans. on Ant. and Propag. 2000. V. 48. № 6. P. 879−886.
  15. Bakhrakh L.D., Los V.F., SHamanov A.N. SHirokopolosnye mikropoloskovye i vibratornye antenny // Antenny. 2001. № 2(48). S. 21−26.
  16. Garg R., Bhartia P., Bahl I., Ittipiboon A. Microstrip antenna design handbook. Artech House. 2001.
  17. Panchenko B.A., Knjazev S.T., Nechaev JU.B., Nikolaev V.I., SHabunin S.N. EHlektrodinamicheskijj raschet kharakteristik poloskovykh antenn. M.: Radio i svjaz. 2002.
  18. CHebyshev V.V. Mikropoloskovye antenny i reshetki v sloistykh sredakh. M.: Radiotekhnika. 2003.
  19. Avdeev V.B., Ashikhmin F.V., Pasternak JU.G., Popov I.V. Model sverkhshirokopolosnojj shhelevojj antenny i optimizacija ee geometrii s pomoshhju geneticheskogo algoritma // Antenny. 2005. № 4(95). S. 11−17.
  20. Antenno-fidernye i optoehlektronnye ustrojjstva. Gl. 5. Metody proektirovanija mikropoloskovykh i shhelevykh antenn / Pod red. d.t.n. prof. V.S. Verby i d.t.n. prof. A.P. Kurochkina. M.: Radiotekhnika. 2014.
  21. Vasylchenko A., Schols Y., De Raedt W., Vandenbosch G.A.E. Quality assessment of computational techniques and software tools for planar-antenna analysis // IEEE Antennas and Prop. Magazine. February 2009. V. 51. № 1. P. 23−37.
  22. Sugawara S.Y., Maita Y., Adachi K. A mm-wave tapered slot antenna with improved radiation pattern // MTT Intern. Symposium Digest. 1997. P. 959−962.
  23. Rizk J.B. and Rebeiz G.M. Millimeter-wave Fermi tapered slot antennas on micromachined silicon substrates // IEEE Trans. on Ant. and Propag. 2002. V. 50. № 3. P. 379−383.
  24. Wang Y.-W., Gao X.-J., Liang J.-G., Zhu Li. Conformal corrugated edges for Vivaldi antenna to obtain improved low-frequency characteristics // Progress in Electromagnetics Research C. 2015. V. 60. P. 75−81.