350 rub
Journal Antennas №9 for 2016 г.
Article in number:
Characteristics of a Vivaldi antenna with corrugated edges
Authors:
V.F. Los - - Ph. D. (Phys.-Math.), Senior Research Scientist, Leading Research Scientist, JSC «Corporation «Vega» (Moscow). E-mail: mail@vega.su
V.R. Mezin - Student, Moscow Aviation Institute (National Research University); Technician , JSC «Corporation «Vega» (Moscow). E-mail: mail@vega.su
Abstract:
Appearance of solid-state oscillators with a subnanosecond duration is stimulated of interest to a development of radars with ultrashort videopulse probing signals. A using in radars of such signals make it possible substantially a enlarge their data characteristics. Particularly. low-frequency parts baseband spectrum of such signals (about some hundreds of MHz) contain a notable value of their power, which is less decayed in mediums with a loss. A this circumstance permit to detect of objects under vegetation covers or un-derlying surfaces/ Antenna systems of such perspective radars in the form of antenna arrays (AA) can to have of ultrawideband radiation characteristics, corresponding to a probing signal spectrum. If a main lobe of AA must to scan, then a partial radiation pattern of AA ele-ments must corresponding to a specified a scan-sector of scanning angles.
Vivaldi antennas may be of ultrawideband antenna elements of such AA. A ratio of upper frequency to lower frequency of working band such elements is about ten. At that have to notice what the perfection of a antenna feed scheme broaden working band mainly aside of upper frequencies, whereas a decrease of a lower frequencies is achieved usually only at the expense of the aperture growth.
The increase of antenna overall dimensions is always extremely undesirable, particularly for air-borne radars. Therefore a search of new form Vivaldi antennas, which have improved characteristics in a low-frequency domain without of a aperture growth, is important. By numerically calculations are proved what a Vivaldi antenna with corrugated edges may have improved low-frequency characteristics without an aperture growth.
In article is considered Vivaldi antennas with six forms of corrugated edges and for every of fofmsis determined of the standing-wave ratio in working band and radiation patterns in main planes. It is determined what better values of a standing-wave ratio haven antennas with rectangular and exponential slots in edges. A detail optimization of a slot dimensions not be carry ouy. Results of a antenna characteristics modeling is represented in the graphical forms and showe what presence in Vivaldi antennas of corrugated edges is likewise a some increase of aperture dimension, but widths of radiation patterns practically not decreased. It is given numerical results of Vivaldi antenna characteristics/ Results are represented in graphical forms.
Pages: 48-56
References
- Cerny P., Nevrli J., Mazanek M. Optimization of tapered slot Vivaldi antenna for UWB application // Proc. of 19th Int. Conf. Appl. Electromagn. Commun. 2007. 1−4.
- Reid E.W., Ortiz-Balbuena L., Ghadiri A. et al. A 324-element Vivaldi antenna array for radioastronomy instrumentation // IEEE Trans. on Ant. and Propag. 2012. V. 61. № 1. P. 241−249.
- Shao J.J., Fang G.Y., Ji Y.C. et al. A novel compact tapered-slot antenna for GPR applications // IEEE Antennas Wireless Propag. Lett. 2013. V. 12. P. 972−975.
- Abbosh A.M. Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance // IEEE Antennas Wireless Propag. Lett. 2009. V. 8. P. 690−692.
- Milligan T.A. Modern antenna design. 2nd edition. Wiley-Interscience. 2005.
- Janaswamy R., Schaubert D.H. Analysis of the tapered slot antenna // IEEE Trans. on Ant. and Propag. 1987. V. 35. № 9. P. 1058−1065.
- Yngvesson K.S., Schaubert D.H., Korzeniowski T.L., Kollberg E.L., Thungren T., Johansson J.F. Endfire tapered slot antennas on dielectric substrates // IEEE Trans. on Ant. and Propag. 1985. V. 33. № 12. P. 1392−1400.
- Shin J., Schaubert D.H. A parameter study of stripline-fed Vivaldi notch antenna arrays // IEEE Trans. on Ant. and Propag. 1999. V. 47. № 5. P. 879−886.
- Simons R.N., Dib N.I., Lee R.Q., Katehi L.P.B. Integrated uniplanar transition for linearly tapered slot antenna // IEEE Trans. on Ant. and Propag. 1995. V. 43. № 9. P. 998−1002.
- Leverich W.K., Wu X.-D., Chang K. FET active slotline notch antennas for quasi-optical power combining // IEEE Trans. on Microwave Theory and Techniques. 1993. V. 41. № 9. P. 1515−1517.
- Bolov R.B.,Kondrateva A.P.,Kurochkin A.P.,Los V.F.,Privalova T.JU., JUkhanov JU.V. Sverkhshirokopolosnye izluchateli dlja skanirujushhejj videoimpulsnojj antennojj reshetki // Antenny. 2010. № 2(60). S. 25−30.
- JUkhanov JU.V., Bolov R.B., Privalova T.JU., Kondrateva A.P., Kurochkin A.P., Los V.F. KHarakteristiki izluchatelejj «Vivaldi» v sostave antennojj reshetki // Ultrawideband and Ultrashort Impulse Signals. 6−10 September. 2010. Sevastopol. Ukraine.
- Janaswamy R. An accurate moment method model for the tapered slot antennas // IEEE Trans. on Ant. and Propag. 1989. V. 35. № 12. P. 1523−1528.
- Chio T.-H. and Schaubert D.H. Parameter study and design of wide-band widescant dual-polarized tapered slot antenna arrays // IEEE Trans. on Ant. and Propag. 2000. V. 48. № 6. P. 879−886.
- Bakhrakh L.D., Los V.F., SHamanov A.N. SHirokopolosnye mikropoloskovye i vibratornye antenny // Antenny. 2001. № 2(48). S. 21−26.
- Garg R., Bhartia P., Bahl I., Ittipiboon A. Microstrip antenna design handbook. Artech House. 2001.
- Panchenko B.A., Knjazev S.T., Nechaev JU.B., Nikolaev V.I., SHabunin S.N. EHlektrodinamicheskijj raschet kharakteristik poloskovykh antenn. M.: Radio i svjaz. 2002.
- CHebyshev V.V. Mikropoloskovye antenny i reshetki v sloistykh sredakh. M.: Radiotekhnika. 2003.
- Avdeev V.B., Ashikhmin F.V., Pasternak JU.G., Popov I.V. Model sverkhshirokopolosnojj shhelevojj antenny i optimizacija ee geometrii s pomoshhju geneticheskogo algoritma // Antenny. 2005. № 4(95). S. 11−17.
- Antenno-fidernye i optoehlektronnye ustrojjstva. Gl. 5. Metody proektirovanija mikropoloskovykh i shhelevykh antenn / Pod red. d.t.n. prof. V.S. Verby i d.t.n. prof. A.P. Kurochkina. M.: Radiotekhnika. 2014.
- Vasylchenko A., Schols Y., De Raedt W., Vandenbosch G.A.E. Quality assessment of computational techniques and software tools for planar-antenna analysis // IEEE Antennas and Prop. Magazine. February 2009. V. 51. № 1. P. 23−37.
- Sugawara S.Y., Maita Y., Adachi K. A mm-wave tapered slot antenna with improved radiation pattern // MTT Intern. Symposium Digest. 1997. P. 959−962.
- Rizk J.B. and Rebeiz G.M. Millimeter-wave Fermi tapered slot antennas on micromachined silicon substrates // IEEE Trans. on Ant. and Propag. 2002. V. 50. № 3. P. 379−383.
- Wang Y.-W., Gao X.-J., Liang J.-G., Zhu Li. Conformal corrugated edges for Vivaldi antenna to obtain improved low-frequency characteristics // Progress in Electromagnetics Research C. 2015. V. 60. P. 75−81.