350 rub
Journal Antennas №8 for 2016 г.
Article in number:
Features of contoured beams formed by phased array antennas
Authors:
A.V. Shishlov - Ph. D. (Eng.), Deputy Head of Department, Moscow Institute of Physics and Technology (State University); Head of Department, PJSC «Radiofizika» (Moscow). E-mail: jscapex@online.ru Yu.V. Krivosheev - Ph. D. (Eng.), Lecturer, Moscow Institute of Physics and Technology (State University); Senior Research Scientist, PJSC «Radiofizika» (Moscow). E-mail: jscapex@online.ru V.I. Melnichuk - Research Scientist, PJSC «Radiofizika» (Moscow). E-mail: jscapex@online.ru
Abstract:
The features of contoured radiation patterns (beams) of phased array antennas are considered. The main parameters of contoured beam arrays are presented. The phase-only and amplitude-and-phase contoured beam synthesis problems are formulated and the comparison of their solutions - features is given. The engineering formulas have been obtained for estimating the efficiency of the an-tennas considered. The scanning features of phased arrays - contoured beams are described. Shaped beam synthesis maximizing gain by optimizing the amplitude and phase distributions yields somewhat superior results compared to phase-only optimization. The principal advantage of amplitude-and-phase synthesis is the possibility of forming low sidelobes outside the service area. Shaped beam synthesis maximizing equivalent isotropically radiated power by optimizing the amplitude and phase distributions leads to the solution having the constant amplitude distribution at the array elements which is equivalent to the phase synthesis problem solution. The diffracted edge waves of the aperture determine not only the sidelobe pattern of the contoured beam antenna but also the oscil-lations in the service area. It-s possible to find the phase synthesis problem solution that provides the edge waves being directed outside the service area which leads to improving the efficiency of the coverage of this area by the contoured beam. The connection between service area coverage efficiency and GAP - the product of minimum gain in the service area and the solid angle occupied by this service area, has been established. The estimates of service area coverage efficiency well matching the optimization results have been obtained by approximation of the contoured beam with a truncated cone (or pyramid). Scanning a contoured beam by addition of linear phase terms in the array aperture the contoured beam shape is changed according to coordinate lines of direction cosines. For the condition of grating lobes - absence within the visible space to be satisfied the phased array with a contoured beam must have lesser element spacing than the array with a pencil beam.
Pages: 44-58
References

 

  1. Egorov E.N., Epshtein A.L., Guskov G.Ya., Levitan B.A., Sbitnev G.V., Shishlov A.V. New Technologies in Multibeam and Scanning Beam Antennas for Communication Systems // Proceedings of the APSCC\'94 Workshop. 1994. Seoul. Korea. P. 211−221.
  2. Egorov E.N., Sbitnev G.V., CHistjukhin V.V. Ocherki razvitija tekhniki tverdotelnykh aktivnykh fazirovannykh reshetok v zelenogradskojj shkole SVCH-mikroehlektroniki // Radiotekhnika. 2010. № 4. S. 6−13.
  3. Bornemann W., Balling P., English W.J. Synthesis of Spacecraft Array Antennas for Intelsat Frequency Reuse Multiple Contoured Beams // IEEE Transactions on Antennas and Propagation. 1985. V. AP-33. № 11. P. 1186−1193.
  4. Zaghloul A.I., Assal F.T., Sorbello R.M. Multibeam Active Phased Array System Configurations for Communications Satellites // Military Communications Conference - Crisis Communications: The Promise and Reality. MILCOM 1987. V. 1. P. 289−293.
  5. Jacomb-Hood A., Lier E. Multibeam active phased arrays for communications satellites // IEEE Microwave Magazine. 2000. V. 1. № 4. P. 40−47.
  6. Kerce J.C., Brown G.C., Mitchell M.A. Phase-only transmit beam broadening for improved radar search performance // IEEE Radar Conference. 2007. P. 451−456.
  7. Pistolkors A.A. Postroenie antenn po zadannojj napravlennojj kharakteristike // Izvestija ehlektr. prom. i slabogo toka. 1939. № 1. S. 9−19.
  8. Woodward P.M. A method of calculating the field over a plane aperture required to produce a given polar diagram // Journal I.E.E. London. 1947. Part IIIA. V. 93.  P. 1554−1558.
  9. Zelkin E.G. Postroenie izluchajushhejj sistemy po zadannojj diagramme napravlennosti. M.-L.: Gosehnergoizdat. 1963. 280 s.
  10. Minkovich B.M., JAkovlev V.P. Teorija sinteza antenn. M.: Sov. Radio. 1969. 296 s.
  11. Bakhrakh L.D., Kremeneckijj S.D. Sintez izluchajushhikh sistem. M.: Sov. Radio. 1974. 232 s.
  12. Zelkin E.G., Kravchenko V.F., Gusevskijj V.I. Konstruktivnye metody approksimacii v teorii antenn. M.: SAJJNS-PRESS. 2005.
  13. Schell A.C. and Ishimaru A. Antenna pattern synthesis. In «Antenna Theory». Part 1. / Ed. R. Collin and F. Zucker. New York: McGraw-Hill. 1969.
  14. Steyskal H. On antenna power pattern synthesis // IEEE Transactions on Antennas and Propagation. 1970. V. AP-18. № 1. P. 123−124.
  15. Stutzman W.L. Synthesis of shaped-beam radiation patterns using the iterative sampling method // IEEE Transactions on Antennas and Propagation. 1971. V. AP-19. P. 36−41.
  16. Galindo-Israel V., Lee S.-W., and Mittra R. Synthesis of a Laterally Displaced Cluster Feed for a Reflector Antenna with Application to Multiple Beams and Contoured Patterns // IEEE Transactions on Antennas and Propagation. 1978. V. AP-26. № 2. P. 220−228.
  17. Jorgensen R. Coverage shaping of contoured-beam antennas by aperture field synthesis // Proceedings of IEE. 1980. V. 127. № 4. P. 201−208.
  18. Chakraborty A., Das B.N., and Sanyal G.S. Beam Shaping Using Nonlinear Phase Distribution in a Uniformly Spaced Array // IEEE Transactions on Antennas and Propagation. 1982. V. AP-30. № 5. P. 1031−1034.
  19. Eliott R.S., Stern G.J. A New Technique for Shaped Beam Synthesis of Equispaced Arrays // IEEE Transactions on Antennas and Propagation. 1984. V. AP-32. № 10. P. 1129−1133.
  20. Klein C.A. Design of Shaped-Beam Antennas through Minimax Gain Optimization // IEEE Transactions on Antennas and Propagation. 1984. V. AP-32. № 9. P. 963−968.
  21. Poulton G.T. Power Pattern Synthesis Using the Method of Successive Projections // IEEE AP-S. Dig. 1986. V. 24. P. 667−670.
  22. Bucci O.M., D-Elia G., Mazzaarella G., and Panariello G. Antenna Pattern Synthesis: A New General Approach // Proceedings IEEE. 1994. V. 82. № 3. P. 358−371.
  23. Sazonov D.M., Frolov N.Ja. Methods of Synthesis of Shaped Contour Beam Reflector Antennas with Single and Multielement Feeds // Proceedings of the 28th Moscow International Conference on Antenna Theory and Technology. Moscow. Russia. 1998. P. 399−402.
  24. Khzmalyan A. and Kondratiev A. The phase-only shaping and adaptive nulling of an amplitude pattern // IEEE Transactions on Antennas and Propagation. 2003. V. 51. № 2. P. 264−272.
  25. Bhattacharyya A.K. Shaped-Beam Array Design: Optimization Algorithms. Chapter 11 in «Phased Array Antennas». John Wiley & Sons. 2006. P. 347−377.
  26. Scholnik D.P. A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design // IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 1. P. 89−98.
  27. Lier E., Melcher R. A Modular and Lightweight Multibeam Active Phased Receiving Array for Satellite Applications: Design and Ground Testing // IEEE Antennas and Propagation Magazine. 2009. V. 51. № 1. P. 80−90.
  28. Roederer A.G. Antennas for Space: Some Recent European Developments and Trends // 18th International Conference on Applied Electromagnetics and Communications. 2005. P. 1−8.
  29. Stirland S., Scouarnec D., Wolf H. Current Status and Future Trends in Satellite Telecommunications Antennas // Loughborough Antennas & Propagation Conference. UK. 2013. P. 14−17.
  30. Guskov G.Yu., Egorov E.N., Likhtenvald V.V., Sbitnev G.V. Airborne transponder complex with multibeam active phased antenna arrays for fixed and mobile communications satellite systems in 30/20 and 14/11 GHz range // Proceedings of the 2nd International Conference on Satellite Communications (ICSC \'96). 1996. V. 4. P. 96−97.
  31. Yegorov E.N., Likhtenvald V.V., Sbitnev G.V. The system of active phased array antennas for satellite relay «Kupon» // Proceedings of the XVIII Moscow International Conference on Antenna Theory and Technology. Moscow. 1998. P. 55−61.
  32. Anpilogov V.R. Covremennye sputniki svjazi i veshhanija. Kakojj sputnik nuzhen Rossii - // Prilozhenie 1: Antenny s konturnojj diagrammojj napravlennosti. Tekhnologii i sredstva svjazi. 2005. № 6−2. Specialnyjj vypusk «Sputnikovaja svjaz i veshhanie 2006». S. 75−76.
  33. SHubov A.G., SHishlov A.V. EHffektivnost antennykh ustrojjstv s konturnymi diagrammami napravlennosti // EHlektromagnitnye volny i ehlektronnye sistemy. 1997. T. 2. № 1. S. 54−57.
  34. SHishlov A.V. Zerkalnye antenny s konturnymi diagrammami napravlennosti - ehffektivnost i predelnye vozmozhnosti // Radiotekhnika. 2006. № 2. S. 45−50.
  35. SHishlov A.V. Teorija i proektirovanie zerkalnykh antenn dlja radiosistem s konturnymi zonami obsluzhivanija // Radiotekhnika. 2007. № 4. S. 39−49.
  36. Shishlov A.V., Vilenko I.L., Krivosheev Yu.V. Active Array Fed Reflector Antennas. Practical Relations and Efficiency // Proceedings of the 6th European Conference on Antennas and Propagation. Prague. 2012. P. 2362−2366.
  37. Shishlov A.V., Vilenko I.L., Krivosheev Y.V. Asymptotic theory, design and efficiency of array-fed reflector antennas // Phased Array Systems and Technology. IEEE International Symposium. Boston-Waltham. 2013. P. 320−327.
  38. Vilenko I.L., Krivosheev JU.V., SHishlov A.V., JOm I.V., Om M.S., JUn S.KH. Dvukhluchevaja mnogozerkalnaja bortovaja antenna sputnikovojj svjazi diapazona 20/30 GGc s perenacelivaemym luchom izmenjaemojj formy // Radiotekhnika. 2016. № 4. S. 56−62.
  39. Ersoy L. Gain area product of an aperture // Antennas & Propagation Society Int. Symposium Digest. 1984. P. 185−188.
  40. Thompson J.D. Flat-topped antenna beams with maximum gain-area product // IEEE Antennas and Propagation Society International Symposium. 2007. P. 5773−5776.
  41. Skobelev S.P. Fazirovannye antennye reshetki s sektornymi parcialnymi diagrammami napravlennosti // M.: Fizmatlit. 2010.
  42. Shor N.Z. Minimization methods for non-differentiable functions // New York: Springer-Verlag. 1985.
  43. Ben-Tal A. and Teboulle M. A smooth technique for nondifferentiable optimization problems / Ed. Dolecki S. // Optimization, Proc. of the Fifth French-German Conference (held in Castel-Novel 1988), Lecture Notes in Mathematics. Berlin: Springer-Verlag. 1988. № 1405. P. 1−11.
  44. Born M., Volf EH. Osnovy optiki. Izd. 2-e. M.: Nauka. 1973.
  45. Kinber B.E. Obratnye zadachi teorii zerkalnykh antenn ? priblizhenie geometricheskojj optiki. M.: IREH AN SSSR. 1984. Preprint № 38(410).
  46. Kinber B.E., Kapcov S.N., SHishlov A.V. Obratnye zadachi v optike i teorii antenn // Materialy IX Vsesojuznojj shkoly po difrakcii i rasprostraneniju voln. Izd. KAI. 1988. 118 s.
  47. Borovikov V.A., Kinber B.E. Geometricheskaja teorija difrakcii. M.: Svjaz. 1978. 248 s.
  48. Mehler M.J., Westcott B.S. Applications of generalized GO reflector synthesis to highly shaped beam antennas // IEE International Conference on Antennas and Propagation (ICAP 85). 1985. P. 266−270.
  49. Katagi T., Takeichi Y. Shaped-Beam Horn-Reflector Antennas // IEEE Transactions on Antennas and Propagation. 1975. V. 23. № 6. P. 757−763.
  50. Melnichuk V.I., SHishlov A.V. EHffektivnost antenn s konturnymi diagrammami napravlennosti. Dvumernaja zadacha // Radiotekhnika. 2014. № 1. S. 79−87.