350 rub
Journal Antennas №7 for 2016 г.
Article in number:
On the completeness of a system of boundary value problems for the ferrite waveguides obtained by shortening the differential equation
Keywords:
boundary value problem
differential equation
round longitudinally magnetized ferrite waveguide
the longitudinal component of the field
Authors:
A.V. Nazarov - Ph. D. (Eng.), Associate Professor, Head of Department, Yu.Ye. Sedakov Research Institute of Measuring Systems (Nizhniy Novgorod). E-mail: physics@nntu.nnov.ru
N.A. Novoselova - Ph. D. (Eng.), Associate Professor, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: physics@nntu.nnov.ru
S.B. Raevsky - Dr. Sc. (Eng.), Professor, Honored Scientist of RF, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: physics@nntu.nnov.ru
Abstract:
This article discusses two methods for solving the boundary value problem for a circular longitudinally magnetized ferrite waveguide. We formulate a statement on the completeness of solutions of the system obtained by shortening the differential equation for a scalar function of the longitudinal field component.
Solutions of boundary value problems formulated based on two different approaches have the same radial dependence. Thus, the solutions of boundary value problems, obtained by shortening the differential equation coincide with the solutions of the problem in a rigorous formulation and by the uniqueness of the past form a complete system of solutions of the ferrite guiding structures.
Pages: 63-66
References
- Sul G., Uoker L. Voprosy volnovodnogo rasprostranenija ehlektromagnitnykh voln v girotropnykh sredakh. M.: Inostrannaja literatura. 1955. 189 s.
- Nazarov A.V., Raevskijj S.B. O spektre voln kruglogo otkrytogo ferritovogo volnovoda // Radiotekhnika i ehlektronika. 2004. T. 49. № 4. S. 439−444.