350 rub
Journal Antennas №7 for 2016 г.
Article in number:
Behavior of mutual power flow partial waves
Authors:
N.A. Novoselova - Ph. D. (Eng.), Associate Professor, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: physics@nntu.nnov.ru E.V. Pavlovich - Head of 1203 military representative office RF Ministry of Defense. E-mail: physics@nntu.nnov.ru S.B. Raevskii - Dr. Sc. (Eng.), Professor, Honored Scientist of RF, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: physics@nntu.nnov.ru
Abstract:
The possible existence of counter-power flow is a characteristic feature of the non-uniform (eg, layered) guides electrodynamic structures as screened and open. The existence of counter-flow capacity is due to a reversal of the last distributed, leading to such phenomena as complex waves of their own, a comprehensive response. This article describes the interaction of plane waves can lead to the formation of counter-power flows. We consider that in the local areas of cross section of the flow of power structures carried by its own wave formed by a superposition of plane waves can be negative, resulting in a total power flux own complex waves carried through the entire cross-section of the structure, may be zero. For clarity, the physical interpretation of the formation of counter-power flows in the article is considered together, only two plane waves, one of which owes its existence to participate in recording solutions electric Hertz vector, the other - magnetic. In case of equality of counter power flows in a two waveguides having complex wave. In the mode of complex waves plane waves forming their fields, thus refracted at the interface between the layers, which in passing through this border power flow carried by them, changing direction. We have reviewed the article, only two plane waves from a common set. A similar analysis can be made for any combination of plane waves forming the field in the waveguide structure bilayer, and in general the whole set. Because in an open round the Far East field in the outer region is described by the Hankel functions, which are combinations of Bessel functions of the first and second kind, conducted analysis can be extended to an open waveguide. The nature of it colliding power flow is the same. When the counter-power flows affect equal, as shown above, in the round open LW there own complex wave satisfying the Sommerfeld radiation. Thus, the emergence of complex waves in different layered structures without dissipation of energy due to the peculiarities of the electromagnetic field passing through a curved border, leading to the formation in the adjacent layers of counter power flows. Change of conditions at the border (for example, the introduction of the resistive film) may cause imbalance of power as a result of which the resulting power carried by complex waves will be nonzero.
Pages: 58-62
References

 

  1. Veselov G.I., Raevskijj S.B. Sloistye metallo-diehlektricheskie volnovody. M.: Radio i svjaz. 1988. 248 s.
  2. Raevskijj A.S., Raevskijj S.B. Neodnorodnye napravljajushhie struktury, opisyvaemye nesamosoprjazhennymi operatorami. M.: Radiotekhnika. 2004. 110 s.
  3. Raevskijj A.S., Raevskijj S.B. Kompleksnye volny. M.: Radiotekhnika. 2010. 223 s.
  4. Raevskijj S.B. Kompleksnye volny v dvukhslojjnom ehkranirovannom volnovode // Izvestija VUZov SSSR. Radiofizika. 1972. T. 15. № 1. S. 112−116.
  5. Raevskijj S.B. O sushhestvovanii kompleksnykh voln v nekotorykh dvukhslojjnykh izotropnykh strukturakh // Izvestija VUZov SSSR. Radiofizika. 1972. T. 15. № 12. S. 1926−1931.
  6. Veselov G.I., Raevskijj S.B. Kompleksnye volny v poperechno-neodnorodnykh napravljajushhikh strukturakh // Radiotekhnika. 1987. T. 42. № 8. S. 64−67.
  7. Ivanov A.E., Raevskijj S.B. Kompleksnyjj rezonans v strukture na osnove kruglogo dvukhslojjnogo ehkranirovannogo volnovoda // Radiotekhnika i ehlektronika. 1991. T. 36. № 8. S. 1463−1468.
  8. Kacenelenbaum B.Z. Vysokochastotnaja ehlektrodinamika. M.: Nauka. 1966. 240 s.
  9. Bejjtmen G., EHrdejji A. Vysshie transcendentnye funkcii. T. 2. M.: Nauka. 1966. 295 s.