350 rub
Journal Antennas №3 for 2016 г.
Article in number:
Research of axially magnetized and shielded multilayered ferrite-dielectric radial waveguides
Authors:
E. A. Mikhalitsyn - Post-graduate Student of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Research Engineer 3rd cat., FSUE FRPC - Measuring System Research Institute n.a. Yu.Ye. Sedakov - (Nizhny Novgorod). E-mail: mihalitsynea@gmail.com A. S. Raevsky - Dr.Sc. (Phys.-Math.), Professor, Head of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: raevsky@nntu.nnov.ru A. Yu. Sedakov - Dr.Sc. (Eng.), Associate Professor, Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Director of FSUE FRPC - Measuring System Research Institute n.a. Yu.Ye. Sedakov - (Nizhny Novgorod). E-mail: niiis@niiis.nnov.ru
Abstract:
The eigenwaves discrete spectrum of multilayered anisotropic gyrodielectric radial waveguides is researched in the paper. Magnetic and dielectric mediums - constants are considered as a second-rank tensors. The decision of the boundary problem is carried out by modes matching method. Maxwell\'s equations for the complex amplitudes of the electromagnetic field components converted to a generalized Helmholtz equation in a gyrotropic medium are solved with the use of L-method. The method consists in procedure of variables separation in which all the longitudinal components of the electromagnetic field have the same dependence on the transverse coordinates and vary depending on the longitudinal coordinate presentation. As a result, the longitudinal coordinate dependence of azimuthally field components is represented as a linear combination of four harmonic functions two of them have different longitudinal propagation constants and the others are just shifted with a phase π /2. The dispersion equation of eigenwaves for a multilayered gyrodielectric radial waveguide is obtained by an algebraization procedure of boundary conditions for the electric and magnetic azimuthally components on the every boundary between adjacent layers. As a result, the dependence of the radial component of the field is eliminated and the eigenwaves dispersion equation is written as the zero equaling determinant of algebraic equations system. The linear equations system is convenient represented in block-matrix form. All block-matrix elements have 2x2 dimension. The appropriate block-matrix elements for dielectric layers are diagonal. For the determinant order reduction, expression of amplitude coefficients of field expansion in the every layer through the coefficients of the previous one is used starting from the second layer. Eventually of successive substitution these expressions from one in another, the transcendental equation in the form of determinant of square second order matrix is obtained. The resulting transcendental equation is solved in regard to a transverse propagation constant. The calculation results and eigenwaves discrete spectrum analysis are provided for the multilayered gyrodielectric radial waveguides, which are so important in practice. Firstly, dielectric-ferrite-dielectric radial waveguide is analyzed. The main property of the hybrid doublet eigenwaves of guiding structure with gyrolayers consists in the splitting of dispersion characteristics to concern to the dispersion characteristics of appropriate dielectric radial waveguide. The dispersion characteristics of unsymmetrical radial waveguide modes don-t have intersection points because of eigenwaves aren-t energetically orthogonal. Secondly, the research of ferrite-dielectric-ferrite radial waveguide eigenwaves spectrum is carried out with the fixed value of per-meability tensor nondiagonal element and with frequency dependence of magnetic permeability tensor components defined by the Landau-Lifshitz model of the saturated ferrite with zero and nonzero magnetic bias field. Thirdly, the eigenwaves discrete spectrum analysis of the double-layered ferrite-dielectric radial waveguide is performed with longitu-dinal inhomogeneous internal magnetic state of ferrite. The comparison of two methods - efficiency of ferrite layer stratification is carried out.
Pages: 55-66
References

 

  1. Belov JU.G.Razrabotka i primenenie metoda chastichnykh oblastejj dlja rascheta funkcionalnykh uzlov SVCH- i KVCH-diapazo­nov. Diss. - dokt. tekhn. nauk. N. Novgorod: NGTU. 2004.
  2. Wang C., Zaki K.A.Generalized multilayer anisotropic dielectric resonator // IEEE Trans. on Microwave Theory and Techniques. 2000. V. 48. № 1. P. 60-66.
  3. Krupka J. Resonant modes in shielded cylindrical ferrite and single-crystal dielectric resonators // IEEE Trans. on Microwave Theory and Techniques. 1989. V. 37. № 4. P. 691-698.
  4. Derzakowski K., Krupka J., Abramowicz A. Magnetically tunable dielectric resonators and filters // 34th European Microwave Conference. Amsterdam. 2004. P. 1121-1124.
  5. Yung E.K., Chen R.S., Wu K., Wang D.X. Analysis and development of millimeter-wave waveguide-junction circulator with a ferrite sphere // IEEE Trans. on Microwave Theory and Techniques. 1998. V. 46. № 11. P. 1721-1734.
  6. Wu H.C., Dou W.B.Field structures of waveguide junction circulators with shaped ferrite simulated based on exact treatment // Progress In Electromagnetics Research. 2006. № 57. P. 33-54.
  7. Abramov V.P., Dmitriev V.A., SHelukhin S.A. Nevzaimnye ustrojjstva na ferritovykh rezonatorakh. M.: Radio i svjaz. 1989.
  8. Sedakov A.JU.Metodika rascheta geometricheskojj konfiguracii ferritovykh ehlementov volnovodnykh perekljuchatelejj bortovykh RLS KVCH diapazona // Trudy NGTU. 2012. № 2 (95). S. 19-30.
  9. Zommerfeld A.EHlektrodinamika. M.: IL. 1958.
  10. Kim H.D., Kirsanov I., Volobonev N.The new approach to designing W-band Y-junction circulator with small insertion loss // IEEE MTT-S Digest. 1988. P.637-639.
  11. Mikhalicyn E.A., Raevskijj A.S., Sedakov A.JU. Dva podkhoda k resheniju kraevykh zadach o rezonansnykh i napravljajushhikh strukturakh s girotropnym zapolneniem // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2015. № 2. S. 33-41.
  12. Mikhalicyn E.A., Raevskijj A.S., Sedakov A.JU. Raschet i issledovanie diskretnogo spektra voln ferrit-diehlektricheskogo radialnogo volnovoda // Antenny. 2015. № 7. S. 70-78.
  13. Veselov G.I., Raevskijj S.B. Sloistye metallodiehlektricheskie volnovody. M.: Radio i svjaz. 1988.
  14. Malakhov V.A., Raevskijj A.S., Raevskijj S.B. O reshenii dispersionnykh uravnenijj voln napravljajushhikh ehlektrodinamicheskikh struktur na kompleksnykh ploskostjakh volnovykh chisel // ZHurnal vychislitelnojj matematiki i matematicheskojj fiziki. 2015. № 6. S. 1028-1038.
  15. Bazhilov V.A.Raschet i issledovanie cilindricheskikh ehkranirovannykh SVCH i KVCH kolebatelnykh sistem na osnove diehlektricheskikh rezonatorov. Diss. - kand. tekhn. nauk. N. Novgorod: NGTU. 2007.
  16. Felsenand L.B., Marcuvitz N.Radiation and scattering of waves. Englewood Cliffs, NJ: Prentice-Hall, Inc. 1973.
  17. Mikaehljan A.L.Teorija i primenenie ferritov na sverkhvysokikh chastotakh. M.-L.: Gosehnergoizdat. 1963.
  18. Schloemann E.Microwave behavior of partially magnetized ferrites // J. Appl. Phys. 1970. V. 41. P. 204-214.
  19. Green J., Sandy F.Microwave characterization of partially magnetized ferrites // IEEE Trans. on Microwave Theory and Techniques. 1974. V. 22. № 6. P. 641-645.