350 rub
Journal Antennas №2 for 2016 г.
Article in number:
GNSS reference station antenna for millimeter precision of positioning in real time
Authors:
D. V. Tatarnikov - Dr.Sc. (Eng.), Professor, Department of Radiophysics, Antennas and Microwave Technique, Moscow Aviation Institute (National Research University); Antenna Design Chief, Topcon Positioning Systems, Inc. E-mail: DTatarnikov@topcon.com A. V. Astakhov - Ph.D. (Eng.), Associate Professor, Department of Radiophysics, Antennas and Microwave Technique, Moscow Aviation Institute (National Research University); Leading Antenna Design Engineer, Topcon Positioning Systems, Inc. E-mail: AAstakhov@topcon.com
Abstract:
A new reference antenna system for positioning with the global navigation satellite systems (GNSS) is considered. Antenna system has a homogeneous pattern in the top semi-sphere with a sharp drop (cutoff) while crossing local horizon. The system comprises a commercially available GNSS antenna as an antenna element and an electrically large impedance ground plane; the latter employs a structure of straight pins. An analysis of the straight pins structure in high capacitive impedance mode is given. Opportunities to achieve a cutoff pattern are discussed. By the analysis of asymptotic behavior of the fields it is shown that multipath suppression capabilities of the system in regards to low elevation angles does not depend on directivity properties of an antenna element installed over the ground plane. To achieve an antenna pattern cutoff of 20 dB in the angular sector of +/-12 degrees with respect to the horizon, the ground plane is to be about 13 wavelengths in diameter. The antenna pattern of the newly developed antenna system has been analyzed, the requirements to the antenna element pattern and its location over the ground plane have been discussed, and experimental results for a scale prototype of the antenna system at the frequency of 5,7 GHz have been also presented. An antenna system for GNSS applications has been built. The system has suppression of ground multipath signals at the level of 20 dB for low elevated satellites and at the level of 40-50 dB for high elevated. Antenna system gain is shown to meet the typical common figures for directions close to the zenith and exceed the common figures for low elevations. It has been shown that employing the newly developed system has made the contribution of the multipath error related to reflections from the ground below the level of the system thermal noise. By filtering out such noise, positioning RMS in real time is shown to be below 1 mm.
Pages: 57-67
References

 

  1. Leick A., Rapoport L., Tatarnikov D. GPS satellite surveying. 4-th Ed. Wiley. 2015.
  2. Tranquilla J.M., Carr J.P., Al-Rizzo H.M. Analysis of a choke ring ground plane for multipath control in global positioning system (GPS) applications // IEEE Trans. AP. 1994. V. 42. № 7. P. 905-911.
  3. Kunysz W.A three dimensional choke ring ground plane antenna // Proc. ION GNSS 2003. Institute of Navigation, Portland, OR. P. 1883-1888.
  4. Tatarnikov D., Astakhov A., Stepanenko A. Broadband convex impedance ground planes for multi-system GNSS reference station antennas // GPS solutions. 2011. V. 15. № 2. P. 101-108.
  5. Counselman C.C.Multipath-rejection GPS antenna // Proc. IEEE. 1999. V. 87. № 1. P. 86-91.
  6. Lopez A.R.GPS landing system reference antenna // IEEE AP Magazine. 2010. V. 52. № 1. P. 104-113.
  7. Tatarnikov D.V., Astakhov A.V. Sfericheskaja antennaja reshetka s P-obraznojj DN i nizkim urovnem tenevogo polja // Sb. dokl. VIVseros. konf. «Radiolokacija i radiosvjaz» IREH RAN (19-22 nojabrja 2012 g.). T. 1.S. 3-6.
  8. Tatarnikov D., Astakhov A. Approaching millimeter accuracy of GNSS positioning in real time with large impedance ground plane antennas // Proc. ION ITM 2014. Institute of Navigation. San Diego, CA. P. 844-848.
  9. Tatarnikov D., Astakhov A. Large impedance ground plane antennas for MM-accuracy of GNSS positioning in real time // Proc. PIERS 2013. Progress in Electromagnetics Research Symposium. Stokholm, Sweden. P. 1825-1829.
  10. Sievenpiper D., Zhang L., Broas R.F.J., Alexopoulos N.G., Yablonovitch E. High impedance electromagnetic surfaces with a forbidden frequency band // IEEE Trans. MTT. 1999. V. 47. № 11. P. 2059-2074.
  11. King R.J., Thiel D.V., Park K.S. The synthesis of surface reactance using an artificial dielectric // IEEE Trans. AP. 1983. V. 31. P. 471-476.
  12. Felsen L., Markuvic N. Izluchenie i rassejanie voln. M.: Mir. 1978.
  13. Amitejj N., Galindo V., Vu CH. Teorija i analiz fazirovannykh antennykh reshetok. M.: Mir. 1974.
  14. Vejjcel A.V, Vejjcel V.A., Tatarnikov D.V. Apparatura vysokotochnogo pozicionirovanija po signalam globalnykh navigacionnykh sputnikovykh sistem. Vysokotochnye antenny. Specialnye metody povyshenija tochnosti pozicionirovanija / pod red. M.I. ZHodzizhskogo. M.: MAI-PRINT. 2010.
  15. VanKoughnett A.L.Mutual coupling effects in linear antenna arrays // Canadian Journal of Physics. 1970. V. 48. P. 659-674.