350 rub
Journal Antennas №2 for 2016 г.
Article in number:
Noise temperature of a receiving array-fed reflector antenna
Authors:
Yu. V. Krivosheev - Ph.D. (Eng.), Senior Research Scientist, JSC "Radiofizika"; Lecturer of Moscow Institute of Physics and Technology. E-mail: jscapex@online.ru A. V. Shishlov - Ph.D. (Eng.), Head of Department, JSC "Radiofizika"; Deputy Head of Department of Radio physics and technical cybernetics, Moscow Institute of Physics and Technology
Abstract:
In this paper, antenna noise temperature of a receiving array-fed reflector antenna of focusing type has been calculated. In such an-tennas, a beam inside field-of-view is formed by a cluster of array elements. It is known that as number of array elements in a cluster increases, antenna gain rapidly increases, when number of elements is small. But when number of elements in a cluster is large enough, gain increase significantly slows down. For this reason, when developing a receiving array-fed reflector antenna, a question arises whether increasing number of elements in a cluster is reasonable, because effective noise temperature might increase faster than gain. In this case G/T would decrease as number of elements in a cluster increases. In this paper we derived the analytical expression for effective noise temperature of array-fed reflector, which shows that effective noise temperature does not change as number of elements in a cluster increases. Consequently, G/T increases as number of elements increases. This conclusion has been confirmed by numerical simulation of an array-fed reflector antenna with 10 m reflector operating at 2 GHz with 1 to 37 elements in a cluster.
Pages: 20-25
References

 

  1. Rammos E., Roederer A., Rogard R. Antenna technology for advanced mobile communication systems // In Jet Propulsion Lab. Proc.oftheMobileSatelliteConference. 1988. P. 443-448.
  2. Vilenko I.L., Krivosheev JU.V., SHishlov A.V. Gibridnye zerkalnye antenny s obluchajushhimi aktivnymi fazirovannymi reshetkami // Antenny. 2011. №10. S.22-42.
  3. Egorov E.N. Osnovy mikroehlektroniki SVCH. Ucheb. posobie. M.: MIEHT. 1983.
  4. Gostjukhin V.L. Spektralnye kharakteristiki aktivnykh FAR // Izvestija vuzov. Radioehlektronika. 1987. T. 30. № 2. S. 65-71.
  5. Lee J.J.G/T and noise figure of active array antenna // IEEE Trans. on Antennas and Propagation. 1993. V. 41. № 2. P. 241-244.
  6. EvstropovG.A.AdaptivnajacifrovajapriemnajaFAR// Vknige «Aktivnyefazirovannyeantennyereshetki» / podred. D.I. Voskresenskogoi A.I. Kanashhenkova. M.: Radiotekhnika. 2004. S. 110-130.
  7. Kraft U.R.Gain and G/T of multielement receive antennas with active beamforming networks // IEEE Trans. on Antennas and Propagation. 2000. V. 48. P. 1818-1829.
  8. Markov G.T., Sazonov D.M. Antenny. M.: EHnergija. 1975.
  9. Vendik O.G., Parnes M.D. Antenny s ehlektricheskim skanirovaniem (vvedenie v teoriju). M.: Sajjns-Press. 2002.