350 rub
Journal Antennas №12 for 2016 г.
Article in number:
Layered plane lens antennas
Authors:
B. D. Manuilov - Dr.Sc. (Eng.), Professor, Leading Research Scientist, Rostov-on-Don Research Institute of Radio Communications M. B. Manuilov - Dr.Sc. (Phys.-Math.), Professor, Southern Federal University E-mail: m_manuilov@sfedu.ru S. A. Strelchenko - Leading Engineer, Rostov-on-Don Research Institute of Radio Communications V. B. Chernykh - Head of Group, Rostov-on-Don Research Institute of Radio Communications
Abstract:
Using Fermat principle the ray trajectories in the uniform layers of plane lens antennas have been founded when focusing in the focal point or at infinity. It has been shown that the field amplitude distribution on the aperture of plane lens antenna is equal to product of the feed radiation pattern, cosine of the incidence angle in the power 3/2 and transmission coefficient for the main polarization waves. The plane lenses have been analyzed by means of hybrid technique based on the geometrical optics and the aperture method. The numerical analysis has showed that the optimal discretization step of dielectric permittivity in the radial direction of lens is equal to 0,25λ - 0,5λ. The lens radiation pattern depends very slightly on reflection from lens surfaces. Cross-polarization level is less than 100 dB. When operating in the frequency band of 10% the Fresnel lens with four phase discretes has got minimal thickness (about one wave length) in comparison with other types of plane lenses with the same electrical performances of lenses. Moreover, Fresnel lens hasn\'t any limitations on the maximal diameter, contrary to other plane lenses.
Pages: 47-58
References

 

  1. Zelkin E.G., Petrova R.A. Linzovye antenny. M.: Sov. radio. 1974.
  2. Veneckijj A.S., Kaloshin V.A. Sintez gradientnojj linzovojj antenny s osevojj simmetriejj // Radiotekhnika i ehlektronika. 1991. T. 36. № 12. S. 2301-2307.
  3. Veneckijj A.S., Kaloshin V.A. Sintez aplanaticheskojj linzy s dvumernym gradientom pokazatelja prelomlenija // ZHurnal radioehlektroniki. 2013. №2.
  4. McManus T., Mittra R., Pelletti C. A comparative study of flat and profiled lenses // IEEE International Symposium on Antennas and Propagation. 2012. P. 1-2.
  5. Petosa A., Ittipiboon A., Thirakoune S. Shadow blockage improvement using a perforated dielectric Fresnel lens // IEEE Antennas and Propagation Society International Symposium. 2003. P. 514-517.
  6. Petosa A., Ittipiboon A. Design and performance of a perforated Fresnel lens dielectric // IEE Proc. Microw. Antennas Propag. 2003. V. 150. № 5. P. 309-314.
  7. Manuilov B.D., Manuilov M.B., Strelchenko S.A., CHernykh V.B. Ploskie zonirovannye linzovye antenny // Trudy 25-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii». Sevastopol. 2015. S. 1237-1238.
  8. Aleksandrin A.M., Rjazancev R.O., Salomatov JU.P. Issledovanie kvaziopticheskikh struktur iz iskusstvennogo diehlektrika v SVCH-diapazone // Vestnik Sibirskogo gosudarstvennogo aehrokosmicheskogo un-ta im. akad. M.F. Reshetneva. 2010. № 6. S. 15-18.
  9. Imbert M., Romeu J., Jofre L. Design of a dielectric flat lens antenna for 60 GHz WPAN applications // IEEE Antennas and Propagation Society International Symposium. 2013. P. 1164-1165.
  10. Imbert M., Papió A., Flaviis F., Jofre L., Romeu J. Design and performance evaluation of a dielectric flat lens antenna for millimeter-wave applications // IEEE Antennas And Wireless Propagation Letters. 2015. V. 14. P. 342-345.
  11. Zhang Y., Mittra R., Hong W. A zoned two-layer flat lens design // International Workshop on Antenna Technology (IWAT). 2011. P. 412-415.
  12. Jain S., Abdel-Mageed M., Mittra R. Flat-lens design using field transformation and its comparison with those based on transformation optics and ray optics // IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. P. 777-780.
  13. Manuilov B.D., Manuilov M.B., Reznichenko D.V., Strelchenko S.A., CHernykh V.B. Sposob poluchenija radioizobrazhenijj protjazhennykh obektov // Radiotekhnika. 2014. № 8. S. 55-60.
  14. Weiland T. Time domain electromagnetic field computation with finite difference methods // International Journal of Numerical Modeling. 1996. V. 9. P. 295-319.