350 rub
Journal Antennas №1 for 2016 г.
Article in number:
Design of microstrip antenna arrays with waveguide feeding
Authors:
I. A. Illarionov - Ph.D. (Eng.), Leading Research Scientist, FSUE FRPC - Measuring System Research Institute n.a. Yu.Ye. Sedakov - (Nizhny Novgorod). E-mail: illarionovi@list.ru Ye. L. Varentsov - Head of Research Team, FSUE FRPC - Measuring System Research Institute n.a. Yu.Ye. Sedakov - (Nizhny Novgorod). E-mail: elvarentsov@mail.ru A. V. Kashin - Dr.Sc. (Eng.), Deputy Chief Designer, FSUE FRPC - Measuring System Research Institute n.a. Yu.Ye. Sedakov - (Nizhny Novgorod). E-mail: aKashin@niiis.ru Yu. A. Svetlakov - Ph.D. (Eng.), Leading Research Scientist, FSUE FRPC - Measuring System Research Institute n.a. Yu.Ye. Sedakov - (Nizhny Novgorod). E-mail: niiis@niiis.nnov.ru
Abstract:
The aim of our research is study of the radiation characteristics of the Ka-band microstrip antenna arrays which are excited with a rectangular waveguide. The utilization of the rectangular waveguide provides high efficiency of the microstrip arrays. The results of the theoretical and experimental studies of the one-dimensional and two-dimensional microstrip antenna arrays with hybrid waveguide feed have been showed in this paper. The antenna elements of the treated arrays are microstrip patch antennas. To provide the high gain the resonance condition is imposed in the arrays with maximum of the radiation pattern set perpendicular to broad wall of the exciting waveguide. The designing and optimization of the geometrical parameters of the arrays have been provided with CST MS. The significant objects were: 1) studies of the maximal operating frequency bandwidth of the array; 2) studies of the frequency de-pendence of the efficiency; 3) design of the simple and helpful technological methods of fabrication of the microstrip arrays with wa-veguide feed. The main feature of the studied arrays is implementation of the exciting rectangular waveguide. This feature provides increase of the efficiency of microstrip arrays which is 90% in one-dimensional case and 70% in two-dimensional one. The other effect is expanding of the relative bandwidth up to 6% for the S11 less than -10 dB. This permits the gradual and simple adjustment of the manufactured antennas. The hybrid technique of excitation combines the designing simplicity and satisfactory radiation characteristics of the microstrip antenna arrays. The results of numerical calculations and experimental studies of the crucial antennas characteristics presented in the paper are in good agreement.
Pages: 76-84
References

 

  1. James J.P., Hall P.S., Wood C. Microstrip antenna theory and design. London: Peregrinus. 1981.
  2. Mailloux R.J. , McIlVenna J.F., Kernweis N.P. Microstrip array technology // IEEE Trans. on Antennas and Propagation. 1981. № 29. P. 25-37.
  3. Balanis C.A.Antenna theory: Analysis and design. NY: John Wiley & Sons, Inc. 1997.
  4. Manuilov M.B., Lerer V.A., Sinjavskijj G.P. Metody rascheta i novye primenenija volnovodno-shhelevykh antennykh reshetok // Uspekhi sovremennojj radioehlektroniki. Zarubezhnaja radioehlektronika. 2007. № 5. S. 1-29.
  5. Van der Wilt F.P., Strijbos J.H.M. A 40 GHz planar antenna using hybrid coupling // Proc. of the Conf. - Perspectives on Radio Astronomy: Technologies for Large Antenna Arrays?. 1999. P. 129-134.
  6. Waterhouse R.B.Microstrip patch antennas: A designer-s guide. Boston: Kluwer. 2003.
  7. Voskresenskijj D.I., Stepanenko V.I., Filippov V.S. i dr. UstrojjstvaSVCHiantenny. Proektirovaniefazirovannykhantennykhreshetok. M.: Radiotekhnika. 2003.
  8. Rebeiz G.M.Millimeter-wave and terahertz integrated circuit antennas // Proc. of the IEEE. 1992. V. 80. № 11.
  9. Kim K.W., Na C.H., Woo D.S. New dielectric-covered waveguide-to-microstrip transitions for Ka-band transceivers // IEEE MTT-S Int. Microwave Symp. Dig. June 2003. V. 2. P. 1115-1118.
  10. Artemenko A., Maltsev A., Maslennikov R., Sevastyanov A., Ssorin V. Design of wideband waveguide to microstrip transition for 60 GHz frequency band // Proc. of the 41st European Microwave Conference 2011. Manchester, UK. 2011. P. 838-841.
  11. Yan L., Hong W., Hua G., Chen J., Wu K., Cui T.J. Simulation and experiment on SIW slot array antennas // IEEE Microwave and Wireless Components Letters. 2004. V. 14. № 9. P. 446-448.
  12. Kraus J.D., Marhefka R.J. Antennas for all applications. New York: McGraw-Hill. 2002.
  13. Elliott R.S.Antenna theory and design. Englewood Cliffs, NJ: Prentice-Hall. 1981.
  14. Wu W., Yin J., Yuan N. Design of an efficient X-band waveguide-fed microstrip patch antennas // IEEE Trans. on Antennas and Propagation. 2007. V. 55 (7). P. 1933-1939.
  15. Markov G.T., Sazonov D.M. Antenny. M.: EHnergija. 1975.
  16. Yu B., Wu D., Seo K. Low cost, low side-lobe array of waveguide-fed microstrip antennas // 8th Internat. Symp. on Antennas, Propagation and EM theory. 2008. P. 800-802.