350 rub
Journal Antennas №7 for 2015 г.
Article in number:
Metamaterial ground plane application for GNSS antenna multipath mitigating
Authors:
S. N. Boyko - Ph.D. (Phys.-Math.), Director of Department, "ISDE" Co. Ltd. E-mail: npk6@mail.ru
A. S. Kukharenko - Ph.D. (Eng.), Senior Research Scientist, "ISDE" Co. Ltd.
Yu. S. Yaskin - Ph.D. (Eng.), Head of "ISDE" Co. Ltd.
Abstract:
A classical schema of a mushroom-pipe electromagnetic band gap structure (EBG) has been shown. A construction of an EBG, whichdiffers with the existence on the coupled edges of the EBG elements of a distributed inductance and a lumped capacitance, which decreasethe structure resonance frequency, has been suggested on basis of the presented schema. Applying a method of determiningthe EBG permittivity and permeability by the instrumentality of the measured S-parameters it has been shown, that the suggestedstructure has negative values of permittivity and permeability on the frequencies close to the resonance one, which means, that theEBG is a left-handed double negative metamaterial.A construction of a frequency selective ground plane, designed on basis of the presented EBG metamaterial, which has a flat radialdisk form, which blocks the wave propagation from its edge to the center, where an antenna element is placed, has been described.Existence of the lumped capacitances in the EBG metamaterial structure allows readjusting the ground plane resonant frequency in awide band by simple changing of the capacitance values.A construction of a multiband multipath mitigating ground plane of a GNSS antenna, consisting of the placed one above another frequencyselective ground planes with EBG metamaterial elements and resonant gaps, formed by neighbor ground planes, has beenpresented. The number of frequency selective ground planes is equal to the number of the resonance gaps and is equal to the numberof an antenna element working bands. Each frequency selective ground plane and each resonance gap has a resonance frequencyequal to one of the antenna element frequencies. While placing into the construction, the frequency selective ground planesare formed in the way to orient their ground surface to the top hemisphere and their frequency selective surface to the bottom one.Due to such a design the multipath mitigating ground plane doesn-t narrow the antenna element radiation pattern, doesn-t spoil itsphase center stability, provides multipath mitigating in all antenna element working bands and can be easily adapted to any numberof the working bands.A dual frequency GNSS GLONASS-GPS antenna module, designed using the described EBG metamaterial and multipath mitigatingground plane has been presented. The measured characteristics of the module have been shown the advantages of the presentedconstructions.
Pages: 63-69
References
- Boriskin A.D., Vejjcel A.V., Vejjcel V.A., ZHodzizhskijj M.I., Miljutin D.S. Apparatura vysokotochnogo pozicionirovanija po signalam globalnykh navigacionnykh sputnikovykh sistem: priemniki-potrebiteli navigacionnojj informacii // pod red. M.I. ZHodzishskogo. M.: Izd-vo MAI-PRINT. 2010.
- Tranquilla J.M., Cam J.P., Al-Rizzo H.M. Analysis of a choke-ring ground plane for multipath control in Global Positioning System (GPS) application // IEEE Trans. on Antennas and Propagat. 1994. V. 42. № 7. P. 905-911.
- Scire-Scappuzzo F., Makarov S.N. A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane // IEEE Trans. on Antennas and Propagat. 2009. № 1. V. 57. P. 33-46.
- Fillipov V., Tatarnikov D., Ashjaee J., Astakhov A., Sutiagin I. The first dual-band dual-frequency choke ring // Proc. of the 11-th Internat. Technical Meeting of the Satellite Division of the Institute of Navigation (ION 1998). Nashville. Sept. 1998. P. 1036-1040.
- Lee Y., Ganguly S., Mitra R. Tri-band (L1, L2, L5) GPS antenna with reduced baskloubes // 28 General Assembly of Internat. Union of Radio Science, URSI-GA. New Delhi, India. 2005.
- Sievenpiper D., Zhang L., Broas R.J., Alexopolous N.G., Yablonovich E. High-impedance electromagnetic surfaces with a forbidden frequency band // IEEE Trans. Microw. Theory Tech. 1999. № 11. V. 47. P. 2059-2074.
- Vejjcel A.V., Vejjcel V.A., Tatarnikov D.V. Apparatura vysokotochnogo pozicionirovanija po signalam globalnykh navigacionnykh sputnikovykh sistem: vysokotochnye antenny. Specialnye metody povyshenija tochnosti pozicionirovanija // pod red. M.I. ZHodzishskogo. M.: Izd-vo MAI-PRINT. 2010.
- Ruvio G., Amman M.J., Bao X. Radial EBG cell layout for GPS patch antennas // Electronic Letters. June 2009. V. 45. № 13. P. 663-664.
- Klionovski K.K. Poluprozrachnye ehkrany s induktivnym impedansom // Antenny. 2012. № 1 (176). S. 27-33.
- McKinzie III W.E., Hurtado R., Klimczak W. Artifical magnetic conductor technology reduced size and weight for precision GPS antenna // Institute on Navigation National Technical Meeting. San Diego, CA. Jan. 28-30, 2002. P. 1-12.
- Baggen R., Martinez-Vazquez M., Leiss J., Holzwarth S., Drioli L.S., de Maagt P. Low profile GALILEO antenna using EBG technology // IEEE Trans. on Antennas and Propagat. 2008. V. 56. № 3. P. 667-674.
- Caloz C., Itoh T. Electromagnetic materials: transmission line theory and microwave applications - the engineering approach. New Jersey: John Wiley & Sons inc. 2006.
- Foroozech A., Shafai L. Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas // IEEE Trans. on Antennas and Propagat. 2011. V. 59. № 1. P. 4-20.
- Bojjko S.N., Elizarov A.A., Zakirova EH.A., Kukharenko A.S. Issledovanie malogabaritnogo razvjazyvajushhego SVCH filtra na metamateriale // Materialy mezhdunar. nauchno-tekhnich. konf. APEHP-2014. Saratov, 2014. T. 1. S. 218-224.
- Engheta N., Ziolkowsky R.W. Metamaterials - physics and engineering exploration. Danvers: John Wiley & Sons inc. 2006.
- Veselago V.G. EHlektrodinamika veshhestv s odnovremenno otricatelnymi znachenijamiε i μ // Uspekhi fizicheskikh nauk. 1967. T. 92. № 3. S. 517-526.
- Numan A.B., Sharawi M.S. Extraction of material parameters of metamaterials using a full-wave simulator // IEEE Antenna and Propagat. Magazine. 2013. V. 55. № 5. P. 202-211.