350 rub
Journal Antennas №4 for 2015 г.
Article in number:
Comparative analysis of numerical modeling methods of PIFA an-tenna characteristics
Authors:
K. P. Likhoedenko - Dr.Sc. (Eng.), Professor, Department of Autonomous Information and Operating Systems, Bauman Moscow State Technical University. E-mail: wave@sm.bmstu.ru G. M. Seregin - Post-graduate Student, Department of Autonomous Information and Operating Systems, Bauman Moscow State Technical University. E-mail: cm5.seregin@gmail.com V. B. Suchkov - Dr.Sc. (Eng.), Associate Professor, Department of Autonomous Information and Operating Systems, Bauman Moscow State Technical University. E-mail: vbsuchkov@yandex.ru V. K. Khokhlov - Dr.Sc. (Eng.), Professor, Department of Autonomous Information and Operating Systems, Bauman Moscow State Technical University. E-mail: valerykhokhlov@mail.ru
Abstract:
Digital modeling of the PIFA antenna for frequency range of 433 MHz has been carried out using EMSS FEKO. Calculations of charac-teristics of the PIFA antenna with feeding through a coaxial connector like SMA have been carried out. Influence of a coaxial connector on the antenna parameters has been considered in the article. The developed design of PIFA antenna has been calculated with use of such numerical methods as the method of moments (MoM), the method of finite elements (FEM), the method of finite differences in time domain (FDTD). Comparative analysis of accuracy and efficiency of these methods has been also carried out. It has been shown that for design of the PIFA antenna or other printing antenna it is necessary to consider influence of coaxial connector as it can displace resonant frequency and worsen antenna SWR. Besides, it is possible to replace short-circuiting plate with transitional hole and thus to keep resonant frequency and pass-band, however it can worsen the antenna SWR. The most adequate method of numerical modeling of the PIFA antenna from the point of view of coincidence to experiment data is MoM. For use of MoM it is necessary to get detailed geometrical representation of coaxial connector and all design of the antenna.
Pages: 26-31
References

 

  1. Kurushin A.A. Vychislenie temperatury nagreva golovy cheloveka pri polzovanii sotovym telefonom // ZHurnal radioehlektroniki. 2011. № 4.
  2. Kurushin A.A. Modelirovanie planarnojj antenny GPS s pomoshhju sovremennykh programmnykh kompleksov // Sovremennaja ehlektronika. 2012. № 6. S. 48-53.
  3. Yeboah-Akowuah B., Kallos E., Palikaras G. A novel compact planar inverted-F antenna for biomedical applications in the MICS band // Proceedings of 8th European Conf. on Antennas and Propagation (EuCAP 2014). P. 822-824.
  4. Sljusar V. Antenny PIFA dlja mobilnykh sredstv svjazi // EHlektronika. 2007. № 1. S. 64-74.
  5. Sljusar V. Mnogodiapazonnye antenny mobilnykh sredstv svjazi // EHlektronika. 2006. № 8. S. 90-96.
  6. Bankov S.E., Davydov A.G., Kurushin A.A. Proektirovanie mikropoloskovojj antenny s uchetom teplovykh poter // Sovremennaja ehlektronika. 2008. № 8. S. 48-53.
  7. Borzov A.B., Likhoedenko K.P., Seregin G.M. Principy postroenija sverkhshirokopolosnojj antenny Vivaldi dlja impulsnykh priemoperedajushhikh modulejj sistem blizhnejj radiolokacii i radiosvjazi // Specialnaja tekhnika. 2013. № 6. S. 54-57.
  8. Borzov A.B., Revuckijj S.V., Seregin G.M., Suchkov V.B., KHokhlov V.K. Sverkhshirokopolosnaja spiralnaja antenna v pechatnom ispolnenii dlja impulsnykh priemoperedajushhikh modulejj sistem blizhnejj radiolokacii // Antenny. 2014. № 10. S. 21-24.