350 rub
Journal Antennas №3 for 2015 г.
Article in number:
Formation principles and evaluation methods of focused field in microwave technics
Authors:
V. N. Mitrokhin - Dr.Sc. (Eng.), Professor of Bauman Moscow State Technical University, Senior Research Scientist of Bauman Moscow State Technical University Research Institute E. O. Mozharov - Post-graduate Student of Bauman Moscow State Technical University, Junior Research Scientist of Bauman Moscow State Technical University Research Institute E-mail: eduardmozharov@yandex.ru
Abstract:
The aim of the article is to study the focused electromagnetic field, as a result of a nonequilibrium phase transition from wave state to quasistatic state and to create a physical representation of the complicated phenomena in the formation of the focused field. The main fields of microwave and antenna technologies, which formed the focus area of the electromagnetic field, are considered. The focused electromagnetic field formation principles in the various design reflector and lens antenna, in phased antenna arrays with quasi-optical excitation, in the reflector collimators, in open resonators with spherical circular shape mirrors are demonstrated. The focused area is formed when the high intensity electromagnetic field propagates in the dielectric medium. It leads to self-focusing and self-channeling of microwave energy. The different principles and evaluation methods of focused electromagnetic field are performed: the geometrical optics approach; the reference equations method; the estimation based on the Friis formula; the radiation integral asymptotic analysis; the field decompo-sition method on free space spherical eigenmodes combined with the critical sections concept. The thorough analysis of the field distribution in the focal region by the field decomposition on free space spherical eigenmodes combined with the critical sections concept has shown that the smallest possible size of the focused spot is determined by the critical section of the spherical waveguide lowest eigenmode E01 , then 2r = 2а = 0,45λ. The analysis of the ways of formation and evaluation methods of focused electromagnetic field has shown that the minimum size of the field focused spot is limited by the wave process critical section of the electrodynamics structure. The field within the focus area is in quasi-static condition. It is necessary, at first, to find ways to reduce the size of the focused area to overcome the classical diffraction limit.
Pages: 39-47
References

 

  1. Vajjnshtejjn L.A. Otkrytye rezonatory i otkrytye volnovody. M.: Sov. radio. 1966.
  2. Cejjtlin N.M. Antennaja tekhnika i radioastronomija. M.: Sov. radio. 1976.
  3. Morozov G.A, Morozov O.G, Nasybullin A.R., Samigullin R.R., SHakirov A.S. Formirovanie izdelijj iz radioprozrachnykh materialov s ispolzovaniem SVCH-izluchenija // Izvestija Samarskogo nauchnogo centra RAN. 2012. T. 14. № 1 (2). S. 573-576.
  4. Morozov G.A., Morozov O.G., Sedelnikov JU.E. i dr. Nizkointensivnye SVCH-tekhnologii (problemy i realizacii). M.: Radiotekhnika. 2003.
  5. Mitrokhin V.N. Metody ocenki sfokusirovannogo ehlektromagnitnogo polja // EHlektromagnitnye volny i ehlektronnye sistemy. 2005. T. 10. № 7. S. 52-60.
  6. Mitrokhin V.N. SVCH-ustanovki dlja medicinskikh celejj. Ucheb. posobie / pod red. N.A. Beja. M.: Izd-vo MGTU im. N.EH. Baumana. 1998.
  7. Kornblit S. SVCH-optika. Opticheskie principy v prilozhenii k konstruirovaniju SVCH-antenn: per. s angl. / pod red. O.P. Frolova. M.: Svjaz. 1980.
  8. Parshhikov A.A., ZHarkova N.A. Antenny i apparatura radioteleskopa MGTU im. N.EH. Baumana // Antenny. 2006. № 7 (110). S. 64-68.
  9. Mozharov EH.O., Parshhikov A.A., Golubcov M.E., Rusov JU.S. Kollimator dlja issledovanija maloaperturnykh antenn Ka-diapazona // Sb. dokl. XVIII Mezhdunar. nauchno-tekhnich. konf. «Radiolokacija, navigacija, svjaz». Voronezh. 2012. T. 1. S. 1113-1118.
  10. Vechtomov V.A., Golubcov M.E., Mozharov EH.O. Zerkalnyjj kollimator millimetrovogo diapazona voln // Vestnik MGTU im. N.EH. Baumana. Ser. «Priborostroenie». 2012. S. 303-312.
  11. Bejj N.A., Mitrokhin V.N., JAmashkin V.P. Antennyjj poligon s zerkalnym kollimatorom // Antenny. 2006. № 7 (110). S. 83-84.
  12. Mitrokhin V.N. Kaustiki i katastrofy sfokusirovannogo ehlektromagnitnogo polja // Antenny. 2001. № 8 (54). S. 34-62.
  13. Vajjnshtejjn L.A. EHlektromagnitnye volny. M.: AST. 1988.
  14. Golubeva N.S., Mitrokhin V.N. Osnovy radioehlektroniki sverkhvysokikh chastot. Ucheb. posobie. Izd. 2-e. M: Izd-vo MGTU im. N.EH. Baumana. 2008.
  15. Nefedov E.I. Otkrytye koaksialnye rezonansnye struktury M.: Nauka. 1982.
  16. Mitrokhin V.N. EHlektrodinamika i rasprostranenie radiovoln. Ucheb. posobie. M.: Rudomino. 2010.
  17. Mitrokhin V.N. Metod sobstvennykh funkcijj v zadache multipolnogo izluchenija ehlektromagnitnykh voln // Antenny. 2007. № 11 (126). S. 53-62.