350 rub
Journal Antennas №3 for 2015 г.
Article in number:
Multi-beam Luneburg lens antenna for cellular base stations
Authors:
P. O. Afanasyev - Assistant, Southern Federal University M. B. Manuilov - Dr.Sc. (Phys.-Math.), Professor, Southern Federal Uni-versity E-mail: m_manuilov@sfedu.ru S. M. Matytsin - Ph.D. (Phys.-Math.), Head of Matsing Pte Ltd. V. A. Sledkov - Ph.D. (Phys.-Math.), Leading Research Scientist, Southern Federal University
Abstract:
The design of multi-beam Luneburg lens antenna operating in frequency band 1710 - 2690 MHz is presented. The developed antenna provides 12 independent beams covering the sector of 120°. The dual-polarized radiator providing two orthogonal polarizations has been developed. Being located on the focal surface of the Luneburg lens the radiator provides pattern with 10 dB beam width from 8 to 12 degrees. The tilt is provided by the mechanical movement of each radiator along the focal surface. The isolation between two orthogonal polarizations as well as between all channels is better than -28 dB.
Pages: 16-21
References

 

  1. Saunders S., Arag-on-Zavala A. Antennas and propagation for wireless communication systems. John Wiley & Sons. 2007.
  2. Deng G., Vassilakis B. A broad band dual polarized azimuth beamwidth adjustable antenna for wireless communications // Asia-Pacific Microwave Conference (APMC). 16-20 Dec. 2008. P. 1-4.
  3. Huh H., Tulino A.M., Caire G. Network MIMO with linear zero-forcing beamforming: large system analysis, impact of channel estimation and reduced-complexity scheduling // IEEE Trans. Information Theory. 2012. V. 58. № 5.P. 2911-2934.
  4. Luneburg R. Mathematical theory of optics. University of California Press. 1964.
  5. Lock J.A. Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory // Optical Society of America.2008. V. 25. № 12.
  6. Fuchs B., Le Coq L., Lafond O., Rondineau S., Himdi M. Design optimization of multi-shell Luneburg lenses // IEEE Trans. Antennas and Propagat. 2007. V. 55. № 2. P. 283-289.
  7. Komarova E.V. Antennye i difrakcionnye kharakteristiki mnogoslojjnykh linz Ljuneberga. Diss. - kand. tekhn. nauk. Ekaterinburg. 2012.
  8. Zouganelis G., Budimir D. Effective dielectric constant and design of sliced Luneberg lens // Microwave Opt. Technol. Let. 2007. V. 49. P. 2332-2337.
  9. Hunt J., Kundtz N., Landy N., Nguyen V., Perram T., Starr A., Smith D.R. Broadband wide angle lens implemented with dielectric metamaterials // Sensors. 2011. № 11. P. 7982-7991.
  10. Matytsine L., Lagoiski P., Matytsine M., Matitsine S. Large size, lightweight, Luneburg lenses for multi-beam antenna applications // 6th European Conf. on Antennas and Propagation (EUCAP). 2012. 26-30 March 2012. P. 2266-2270.
  11. Sledkov V.A. Application GB1315430.7. Dual-polarized wideband antenna.
  12. Weiland T. Time domain electromagnetic field computation with finite difference methods // Internat. Journal of Numerical Modeling. 1996. V. 9. P. 295-319.