350 rub
Journal Antennas №9 for 2014 г.
Article in number:
Use of the continuous spectrum in the method of partial regions
Authors:
N. A. Novoselova - Ph.D. (Eng.), Associate Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: physics@nntu.nnov.ru
S. B. Raevskij - Dr.Sc. (Eng.), Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Honored Scientist of RF
A. Yu. Sedakov - Dr.Sc. (Eng.), Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev
S. B. Raevskij - Dr.Sc. (Eng.), Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Honored Scientist of RF
A. Yu. Sedakov - Dr.Sc. (Eng.), Professor of Department of Physics and Technology of Optical Communication, Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Abstract:
In the internal problems of electrodynamics, solved by the method of partial regions, in the case where at least one of the selected partial regions cannot be formulated boundary value problem of Sturm-Liouville problem, the introduction of a continuous spectrum of eigenfunctions is required. Strictly speaking, the functions in this range, you should not call their own, because they are not solutions of the homogeneous boundary value problem. Therefore, the classification used to be considered a conditional: these functions are solutions of the semi-homogeneous boundary value problem - the problem on the homogeneous Helmholtz equation with a partially open boundary. Problems with partially or completely open borders require recording solutions as an integral in the spectral region.
Pages: 70-74
References
- Nikol'skij V.V. Proekcionnye metody v e'lektrodinamike // Nauchno-metodicheskie stat'i po prikladnoj e'lektrodinamike. M.: Vysshaya shkola. 1977. Vyp. 1. S. 4-20.
- Raevskij S.B. Reshenie vnutrennikh zadach e'lektrodinamiki s ispol'zovaniem nepreryvnogo spektra v odnoj iz chastichnykh oblastej // Izv. vuzov SSSR. Radiotekhnika. 1980. T. XXIII. №9. S. 27-32.
- Madelung E'. Matematicheskij apparat fiziki. M.: Gos. izd-vo fiz.-mat. lit-ry. 1961.
- Radionov A.A., Raevskij S.B. Raschet dispersionnykh kharakteristik i koe'fficientov zatukhaniya pryamougol'nykh gofrirovannykh volnovodov // Izv. vuzov SSSR. Radiotekhnika. 1977. T. 20. № 9. S. 69-75.
- Radionov A.A., Raevskij S.B. Raschet dispersionnykh kharakteristik i koe'fficientov zatukhaniya pryamougol'nykh gofrirovannykh volnovodov // Izv. vuzov SSSR. Radiofizika. 1977. T. 20. № 5. S. 801.
- Ilarionov Yu.A., Raevskij S.B., Smorgonskij V.Ya. Raschet gofrirovannykh i chastichno zapolnennykh volnovodov. M.: Sov. radio. 1980.
- Belov Yu.G., Raevskij S.B. Raschet rezonatora dlya radiospektroskopa // Radiotekhnika i e'lektronika. 1980. T. 23. № 7. S. 1370-1375.
- Mikropoloskovye ustrojstva SVCh / pod redakciej G.I. Veselova. M.: Vysshaya shkola. 1988.
- Mitra R., Li S. Asimptoticheskie metody teorii volnovodov / perevod s angl. pod red. G.V. Voskresenskogo. M.: Mir. 1974.