350 rub
Journal Antennas №7 for 2014 г.
Article in number:
Frequency selective structures of microwave and terahertz ranges
Authors:
I. N. Kabanov - Ph.D. (Eng.), Head of Department, Mytishchinskij Scientific-Research Institute of Radio measuring Instruments. E-mail: mr.kin63@mail.ru
V. V. Komarov - Dr.Sc. (Eng.), Professor of Radio Engineering Department, Saratov State Technical University. E-mail: vyacheslav.komarov@gmail.com
V. P. Meshchanov - Dr.Sc. (Eng.), Director of JSC NIKA-SVCH (Saratov). E-mail: nika373@bk.ru
Abstract:
Frequency selective structures (FSS) are widely used in modern radio electronics for control of electromagnetic signals parameters in filters, polarizers, modulators and sensor devices of microwave and terahertz ranges. Two-dimensional FSS represent planar periodic systems with scattering elements (SE) made either in the form of the holes in screens or in the form of metal patches on dielectric substrate. Electrodynamic characteristics of FSS depend on dimensions of singular SE, their periodicity, thickness of metal and dielectric layers, electrophysical properties of materials used for FSS manufacturing. A short survey of different type FSS, areas of their application, methods of analysis, design-technological peculiarities and investigation results is done in present paper. Ring-shaped, cross-shaped, rectangular and some other topologies of FSS, which can be simulated using numerical techniques of discretization of electromagnetic field equations are considered. It is shown that presently the values of such parameters as reflection and transmission coefficients, band pass, attenuation, modulation deepness appropriate for the practical application can be achieved what allows designing the instruments and devices of new generation for microwave and terahertz radio electronic systems.
Pages: 62-67
References

  1. Holloway C.L., Kuester E.F., Gordon J.A., O-Hara J., Booth J., Smith D.R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials // IEEE Antennas and Propagation Magazine. 2012. V. 54. № 2. P. 10-35.
  2. Costa F., Monorchio A., Manara G.Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model // IEEE Antennas and Propagation Magazine. 2012. V. 54. № 4. P. 35-48.
  3. Wu T.K. Frequency selective surfaces and grid array. New York: John Wiley & Sons. 1995.
  4. Chen H.-T., O-Hara J.F., Taylor A.J.,Averitt R.D. Complementary planar terahertz metamaterials // Optics Express. 2007. V. 15. № 3. P. 1084-1095.
  5. Ustrojstva polyarizacii radiovoln v teragercovom diapazone chastot / pod red. A.S. Yakunina. M.: Radiotekhnika. 2012.
  6. Alaverdyan S.A., Bokov S.I., Zajcev N.A., Isaev V.M., Kabanov I.N., Krenickij A.P., Meshchanov V.P. Setochnye struktury polyarizacii e'lektromagnitnykh voln v teragercovom diapazone chastot // E'lektromagnitnye volny i e'lektronnye sistemy. 2012. T. 17. № 12. S. 47-50.
  7. Porterfield D.W., Hesler J.L., Densing R., Mueller E.R.,Crowe T.W., Weikle R.M. Resonant metal-mesh bandpass filters for the far infrared // Applied Optics. 1994. V. 33. № 25. P. 6046-6052.
  8. Wilbert D.S., Hokmabadi M.P., Kung P., Kim S.M.Equivalent-circuit interpretation of polarization insensitive performance of THz metamaterial absorbers // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 846-850.
  9. Zhu N., Ziolkowski R.W. Photoconductive THz antenna designs with high radiation efficiency, high directivity and high aperture efficiency // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 721-730.
  10. Lee S.H., Kim H.-D., Choi H.J., Kang B., Cho Y.R., Min B.Broadband modulation of terahertz waves with non-resonant graphene meta-devices // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 764-771.
  11. Kuznecov S.A., Arzhannikov A.V., Gel'fand A.V., Zorenko A.V.,Gorshunov B.P. Mnogokanal'naya radiometricheskaya sistema dlya registracii submillimetrovogo izlucheniya pri puchkovo-plazmennom vzaimodejstvii // Vestnik Novosibirskogo gosudarstvennogo universiteta. 2010. T. 5. Vyp. 3. S. 5-19.
  12. Zhao Q., Kang L., Du B., Li B., Zhou J. Tunable metamaterials based on nematic liquid crystals // Progress in Electromagnetic Research Symp. Beijing, China. 2007. P. 302-305.
  13. Johansson M., Holloway C.L., Kuester E.F. Effective electromagnetic properties of honeycomb composites, and hollow pyramidal and alternating wedge absorbers // IEEE Trans. on Antennas and Propagation. 2005. V. 53. № 2. P. 728-736.
  14. Kuester E.F., Mohamed M.A., Piket-May M., Holloway C.L.Averaged transition conditions for electromagnetic fields at a metafilm // IEEE Trans. on Antennas and Propagation. 2003. V. 51. № 10. P. 2641-2651.
  15. Li B., Shen Z. Synthesis of quasi-elliptic bandpass frequency-selective surface using cascaded loop array // IEEE Trans. on Microwave Theory and Techniques. 2013. V. 61. № 6. P. 3053-3059.
  16. Zhu L., Meng F.Y., Dong L., Fu J.-H., Wu Q. Low-loss magnetic metamaterial at THz frequencies by suppressing radiation losses // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 805-811.
  17. Wongkasen N., Akyurtlu A. Novel broadband terahertz negative refractive index metamaterials: analysis and experiment // Progress in Electromagnetic Research. 2006. V. 64. P. 205-218.
  18. Wongkasen N., Akyurtlu A. Group theory based design of isotropic negative refractive index metamaterials // Progress in Electromagnetic Research. 2006. V. 63. P. 295-310.
  19. MacDonald M.E., Alexanian A., York R.A., Popovic Z., Grossman E.N. Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters // IEEE Trans. on Microwave Theory and Techniques. 2000. V. 48. № 4. P. 712-718.
  20. Melo A.M., Kornberg M.A., Kaufmann P.,Piazzetta M.H., Bortolucci E.C., Zakia M.B.,Bauer O.H., Poglitsch A., da Silva A.M.P.Metal mesh resonant filters for terahertz frequencies // Applied Optics. 2008. V. 47. № 32. P. 6064-6069.
  21. Winnewisser C., Lewen F., Weinzieri J., Helm H.Transmission features of frequency-selective components in the far infrared determined by terahertz time-dependent spectroscopy // Applied Optics. 1999. V. 38. № 18. P. 3961-3967.
  22. Vegesna S., Zhu Y., Bernussi A., Saed M. Terahertz two-layer frequency selective surfaces with improved transmission characteristics // IEEE Trans. on Terahertz Science and Technology. 2012. V. 2. № 4. P. 441-448.
  23. Weile D.S., Michielssen E., Gallivan K.Reduced-order modeling of multiscreen frequency-selective surfaces using Krylov-based rational interpretation // IEEE Trans. on Antennas and Propagation. 2001. V. 49. № 5. P. 801-813.
  24. Singh D., Kumar A., Meena S., Agarwala V. Analysis of frequency selective surfaces for radar absorbing materials // Progress in Electromagnetic Research. 2012. V. 38. P. 297-314.
  25. Samaddar P., De S., Sarkar S., Biswas S., Sarkar D.C., Sarkar P.P. Study on dual band frequency selective surface for different incident angles // International Journal of Soft Computing and Engineering. 2013. V. 2. № 6. P. 340-342.
  26. Lomakin V., Li S., Michielssen E.Transmission through and wave guidance on metal plates perforated by periodic arrays of through-holes of subwavelength coaxial cross-section // Microwave and Optical Technology Letters. 2007. V. 49. № 7. P. 1554-1558.
  27. Dickie R., Cahill R., Fusco V., Gamble H.S., Mitchell N. THz frequency selective surface filters for earth observation remote sensing instruments // IEEE Trans. on Terahertz Science and Technology. 2011. V. 1. № 2. P. 450-461.
  28. Costa F., Monorcho A., Manara G.Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces // IEEE Trans. on Antennas and Propagation. 2010. V. 58. № 5. P. 1551-1558.
  29. Al-Naib I., Jansen C., Singh R., Walther M., Koch M. Novel THz metamaterial designs: from near- and far-field coupling to high-Q resonances // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 772-782.
  30. Chowdhury D.R., Azad A.K., Singh R. Near field coupling in passive and active terahertz metamaterial devices // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 783-790.
  31. Singh R., Al-Naib I., Cao W., Rockstuhl C., Koch M., Zhang W. The Fano resonances in symmetry broken terahertz metamaterials // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 820-826.
  32. Liu L., Shadrivov I.V., Powell D.A., Raihan M.R., Hattori H.T.,Decker M., Mironov E., Neshev D.N.Temperature control of terahertz metamaterials with liquid crystals // IEEE Trans. on Terahertz Science and Technology. 2013. V. 3. № 6. P. 827-831.