350 rub
Journal Antennas №4 for 2014 г.
Article in number:
The integral-differential equation of the circular impedance vibrator antenna
Authors:
V. S. Eminova - Post-graduate Student, Yaroslav-the-Wise Novgorod State University. E-mail: eminovsi@mail.ru
Abstract:
The integral-differential equation of the circular impedance vibrator antenna with surface boundary conditions of the impedance type has been studied. The original equation is two-dimensional. After highlighting features, we have the one-dimensional integral-differential equation. The main operator of the equation is hypersingular operator. This operator is positive-defined, and its inverse operator is completely continuous. As a result, the original integral-differential equation is equivalent to a Fredholm-s equation of the second kind. To solve the integral-differential equation, a numerical-analytical method is proposed which is based on Chebyshev-s polynomials of the second kind, multiplied by a weighting function. The basis functions satisfy the known Meixner-s conditions on the edge. An important problem of calculating the matrix elements is solved. Numerical result demonstrate the effectiveness of the proposed method.
Pages: 3-5
References

  1. Vasil`ev E.N. Vozbuzhdenie tel vrashheniya. M.: Radio i svyaz`. 1987.
  2. Sochilin A.V., E`minov I.S., E`minov S.I. Vxodnoe soprotivlenie dugovoj vibratornoj antenny' // Antenny'. 2011. № 12. S. 15-17.
  3. Sochilin A.V., E`minov I.S., E`minov S.I. Integro-differenczial`ny'e  uravneniya linejny'x, bikonicheskix i krivolinejny'x vibratorny'x antenn // Antenny'. 2010. № 12. S. 27-34.
  4. Mixlin S.G. Variaczionny'e metody' v matematicheskoj fizike. M.: Nauka. 1970.
  5. E`minov S.I. Analiticheskoe obrashhenie gipersingulyarnogo operatora i ego prilozheniya v teorii antenn // Pis`ma v ZHTF. 2004 g. T. 30. Vy'p. 22. S. 8-16.