350 rub
Journal Antennas №9 for 2013 г.
Article in number:
Minimizing the side lobes level in antenna arrays with the spatial of elements arrangement
Authors:
E.V. Ovchinnikova -C.Sc. (Eng.), Associate Professor of Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute. E-mail: oea8888@gmail.com
S.G. Kondrat-eva -postgraduate student of Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute. E-mail: evolventa5@yandex.ru
P.A. Shmachilin - C.Sc. (Eng.), Senior Teacher of Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute. E-mail: shmachilin@gmail.com
Abstract:
Currently there are rather strict requirements to antenna systems: a high energy potential of the limited aperture size and the low side radiation level. Typically, the weight and size characteristics limit appears during designing of avionics systems (RES) for different purposes. Active phased array (AESA) with the spatial distribution of elements and digital beamforming is perspective direction of creating on-board antenna systems. In the spatial array antennas UBL is only reduced by the optimal allocation of emitters in space, thus the number of elements and the size of the equivalent aperture will be saved, so the value of CPV in any UBL will not be lesser than the CPV for a flat AR with uniform amplitude distribution. UBL decline depends on the spatial function placement of elements in the hexagonal array antenna, so they can be applied to different forms of element accommodation in space: pyramidal, parabolic, spherical, etc. Reducing the level of the side lobe antenna arrays without changing the gain extends the functionality of the AR: increases positioning accuracy, noise immunity and energy potential. Such arrays can be implemented on modern digital components using new methods and technologies for the manufacture of aerial fabric, such as galvanoplastics (electroforming) technology.
Pages: 15-22
References

  1. Pazin L., Leviatan Y. Effect of amplitude tapering and frequency dependent phase errors on radiation characteristics of radial waveguide fed non-resonant array antenna //IEEE Trans. Antennas Propagat. 2005. V. 53. № 12.
  2. Ponomarev L.I., Stepanenko V.I. Skaniruyushhie mnogochastotny'e sovmeshhenny'e antenny'e reshetki. M.: Radiotexnika. 2009.
  3. Pazin L., Leviatan Y.  Uniform amplitude excitation of radiating elements in array antenna pin-fed from radial waveguide // IEE Proc. Microw. Antennas Propag. Dec. 2001. V. 148. № 6.
  4. Pazin L., Leviatan Y. Effect of amplitude tapering and frequency dependent phase errors on radiation characteristics of radial waveguide fed non-resonant array antenna // IEE Proc. Microw. Antennas Propag. Aug. 2004. V. 151. № 4.
  5. Collinson D.L. Passive self-switching dual band array antenna // Patent SShA № 7215284 B2, opubl. 16.11.2006.
  6. Kotov Yu.V., Voskresenskij D.I., Xarlanov Yu.Ya., Ovchinnikova E.V. Razrabotka perspektivny'x AFAR // Otchet po teme № 26610‑04100. MAI - OAO Korporaciya «Fazotron-NIIR». 2004.
  7. Voskresenskij D.I., Ponomarev L.I., Filippov V.S. Vy'pukly'e skaniruyushhie antenny'. M.: Sov. radio. 1978.
  8. Evstropov G.A., Immoreev I.Ya. Cifrovy'e metody' formirovaniya diagramm napravlennosti priyomny'x antenny'x reshyotok // Problemy' antennoj texniki. M.: Radio i svyaz'. 1989.
  9. Slyusar V.I. Cifrovy'e antenny'e reshyotki: Aspekty' raz-vitiya // Special'naya texnika i vooruzhenie. 2002. № 1-2. S. 17-23.
  10. Sander W. Experimental Phased-Array Radar EL Re. An-tenna System // IEE Droc. Aug 1980. V. 127. Pt. F. № 4.
  11. Warcrop B. Digital Beamforming in Radar Systems. A Re-view // Military Microwave Conf. Proc. VK. 1984.
  12. Slyusar V.I. Cifrovy'e antenny'e reshyotki: budushhee radiolokacii // E'lektronika: NTB. 2001. № 3. S. 42-46.
  13. Voskresenskiy D.I., Ovchinnikova E.V. Proc. of the XXVIII Moscow Internat. Conf. on Antenna theory and technology Russia. Moscow. Sept. 1998.
  14. Voskresenskij D.I., Ovchinnikova E.V. Shirokopolosny'e antenny' s shirokougol'ny'm neiskazhenny'm skanirovaniem // Antenny'. 1999. № 1 (42).
  15. Voskresenskij D.I., Tong Suan Daj. Maloe'lementnaya shirokopolosnaya fazirovannaya reshetka // Materialy' 11-j Mezhdunar. Kry'mskoj konf. «SVCh-texnika i telekommunikacionny'e texnologii» (Sentyabr' 2001).
  16. Abdul-Aziz A. Abdul-Aziz, Hanna A. Kamala. Sector synthesis of antenna array using genetic algorithm // J. of theoretical and applied  information  technology. 2005. P. 160-169.
  17. Zelkin E.G. Postroenie izluchayushhej sistemy' po zadannoj diagramme napravlennosti. M. - L.: E'nergoizdat. 1963.
  18. Baxrax L.D., Kremeneckij S.D. Sintez izluchayushhix sistem. M.: Sov. radio. 1974.
  19. Chaplin A.F. Analiz i sintez antenny'x reshetok. L'vov: Vishha shkola. 1987.
  20. Markov G.T., Sazonov D.M. Antenny'. M.: E'nergiya. 1975.
  21. Gabrie'l'yan D.D., Mishhenko S.E. Metod amplitudno-fazovogo sinteza antennoj reshetki proizvol'noj geometrii // Radiotexnika i e'lektronika. 1995. T. 40. № 7.
  22. Mishhenko S.E., Zemlyanskij S.V. Amplitudno-fazovy'j sintez antennoj reshetki s proizvol'ny'm razmeshheniem izluchatelej po zadannoj vektornoj diagramme napravlennosti // Materialy' Vseros. konf. «Izluchenie i rasseyanie E'MV» (Taganrog. 18-23 iyunya. 2001).
  23. Knight P. Synthesizing The Radiation Pattern of Ring Aerial // Industrial Electron. 1963. V. 1. № 10. P. 538-543.
  24. Vicente-Lozano M., Ares-Pena F., Moreno E. Pencil-Beam Pattern Synthesis with a Uniformly Exited Multi-Ring Planar Antenna // IEEE Trans. Antennas Propagat. Dec. 2000. V. 42. № 6.
  25. Dzyuba V.I., Osipov L.V. Optimizaciya razmeshheniya e'lementov antennoj sistemy' pri central'no-simmetrichnom postroenii // Antenny'. Vy'p. 37 / pod red. A.A. Lemanskogo. M.: Radio i svyaz'. 1990.
  26. Zelkin E.G., Kravchenko V.F., Gusevskij V.I. Konstruktivny'e metody' approksimacii v teorii antenn. M: Sajns-Press. 2005.