350 rub
Journal Antennas №3 for 2013 г.
Article in number:
Analysis of doubly periodic dielectric structures by a hybrid projective method
Authors:
S.P. Skobelev, O.N. Smolnikova
Abstract:
Analysis of electromagnetic wave scattering from periodic dielectric structures is of great interest for a number of applications, specifically, for creation of artificial dielectric layers for matching of lens antenna surfaces to free space and for creation of absorbing covers of walls in anechoic chambers. The purpose of the present work is development of a hybrid projective method for numerical analysis of electromagnetic wave scattering by doubly periodic dielectric structures with pyramidal and conical elements. The indicated elements are of interest because they provide a few degrees of freedom for optimization of their shape to obtain the best desirable parameters of scattering. The problem to be solved is formulated as determination of the field scattered from a doubly periodic dielectric structure illuminated by plane TE and TM waves. The algorithm we propose for solution is a new modification of a hybrid projective method developed earlier for calculation of waveguide-dielectric array antennas (S. P. Skobelev, Phased Array Antennas with Optimized Element Patterns, Norwood, MA: Artech House, 2011). The hybridity implies here use of expansion of the transverse electric and magnetic fields over transverse functions of the Floquet modes with unknown variable coefficients, projection of the Maxwell\'s equations on the indicated transverse functions, application of the one-dimensional finite element method, and projective matching of the fields on the boundaries of the partial regions. As a result, the problem is reduced to appropriate systems of linear algebraic equations solved numerically. The main feature of our approach is elimination of the redundancy of the unknowns that takes place in the well known relative method of coupled modes (e.g. M. S. Mirotznik, B. L. Good, P. Ransom, D. Wikner, and J. N. Mait, \"Broadband Antireflective Properties of Inverse Motheye Surfaces,\" IEEE Trans. on Antennas and Propagat. 2010, vol. 58, no 9., pp. 2969-2980). The paper also includes the results of validation characterizing the efficiency of our approach, as well as the results obtained after optimization of the parameters of artificial matching dielectric layers in case of dielectric without losses, and the results of investigation of lossy periodic structures with pyramidal elements based on recently developed ultra-wideband polyurethane foam materials with ultra-dispersed carbonic fillers (O. N. Smolnikova, Development and Investigation of Radio Materials for GPR Antennas, PhD Thesis, Moscow Aviation Institute, 2010). The experimental data corresponding to illumination of the absorbing structures in the broadside direction are complemented here by new results obtained for arbitrary angle of illumination.
Pages: 36-45
References
  1. Morita T., Cohn S.B. Microwave Lens Matching by Simulated Quarter-Wave Transformers // IRE Trans. AntennasPropagat. 1956. V. AP-4. P. 33-39.
  2. ZHuk M.S., Molochkov JU.B. Proektirovanie linzovykh, skanirujushhikh, shirokodiapazonnykh antenn i fidernykh ustrojjstv. M.: EHnergija. 1973.
  3. Mirotznik M.S., Good B.L., Ransom P., Wikner D.,
    Mait J.N
    . Broadband Antireflective Properties of Inverse Motheye Surfaces // IEEE Trans. Antennas Propagat. 2010. V. 58. № 9. P. 2969-2980.
  4. Emerson W.H., Electromagnetic Wave Absorbers and Anechoic Chambers Through the Years // IEEE Trans. AntennasPropagat. 1973. V. AP-21. № 4. P. 484-490.
  5. Micmakher M.JU., Torgovanov V.A. Bezehkhovye kamery SVCH. M.: Radio i svjaz. 1982.
  6. Skobelev S.P., Smolnikova O.N. Analiz odnomerno-periodicheskikh diehlektricheskikh struktur gibridnym proekcionnym metodom // Radiotekhnika i ehlektronika. 2012. T. 57.
  7. Smolnikova O.N., Skobelev S.P. Analysis of Electromagnetic Scattering From Lossy Periodic Structures with Application to Wedge Absorber // Proc. of the 6th European Conference on Antennas and Propagation (EuCAP\'12), Prague, Czech Republic, 26-30 March 2012.
  8. Bibikov S.B., Smolnikova O. N., Menshova S.B. Prokof\'ev M.V., Orlov V.V. Some Approaches to the Development of Absorbing Materials for Ultrawideband Systems // Proc. of 5th International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, September 6-10, 2010. P. 262-265.
  9. Smolnikova O.N. Razrabotka i issledovanie radiomaterialov dlja antennykh ustrojjstv podpoverkhnostnogo zondirovanija // Diss. - kand. tekhn. nauk. Moskovskijj aviacionnyjj institut (GTU). 2010.
  10. Bibikov S.B., Smolnikova O.N., Prokofev M.V. Diehlektricheskie svojjstva i SVCH-provodimost poristykh radiopogloshhajushhikh materialov // Radiotekhnika. 2011. № 3. C. 62-71.
  11. Skobelev S. P. Gibridnyjj proekcionnyjj metod analiza volnovodnykh reshetok s vystupajushhimi diehlektricheskimi ehlementami. Trekhmernaja zadacha // Radiotekhnika i ehlektronika. 2007. T. 52. № 3. S. 322-330.
  12. Skobelev S. P., Fazirovannye antennye reshetki s sektornymi parcialnymi diagrammami napravlennosti. M.: Fizmatlit. 2010.
  13. Amitejj N., Galindo V., Vu CH.-P. Teorija i analiz fazirovannykh antennykh reshetok. M.: Mir. 1974.
  14. Ilinskijj A.S., Kosich N.B. Difrakcija ploskojj volny na dvumernojj periodicheskojj strukture // Radiotekhnika i ehlektronika. 1974. T. 19. № 6. S. 1171-1177.
  15. Ilinskijj A.S., Trubnikov S.V. Raschet fazirovannojj antennojj reshetki volnovodno-sterzhnevogo tipa prjamym proekcionnym metodom // CHislennye metody ehlektrodinamiki. M.: MGU. 1980. S. 26-54.
  16. Trubnikov S.V. Proekcionnye metody issledovanija ehlektrodinamicheskikh zadach volnovodnykh i volnovodno-sterzhnevykh izluchajushhikh sistem // Diss. ... k.f.-m.n. M.: MGU. 1980.
  17. Pinello W.P., Lee R., Cangellaris A.C. Finite Element Modeling of Electromagnetic Wave Interactions with Periodic Dielectric Structures // IEEE Trans. Microwave Theory Tech. 1994. V. 42. № 12. P. 2294-2301.
  18. Sun W., Liu K., Balanis C.A. Analysis of Singly and Doubly Periodic Absorbers by Frequency-Domain Finite-Difference Method // IEEE Trans. Antennas Propagat. 1996. V. 44. № 6. P. 798-805.