350 rub
Journal Antennas №9 for 2012 г.
Article in number:
Optimization of frequency-selective microwave devices using polynomial metamodel framework
Authors:
Yu.V. Kuznetsov
Abstract:
Optimization techniques using polynomial metamodels have been proved useful in computational aerodynamics, mechanical engineering and structural design. However, to the best of author-s knowledge, these techniques nave not been applied to optimization of microwave devices. In this paper, second order polynomial metamodel framework is described, with emphasis on optimization of frequency-selective microwave devices, such as filters. Polynomials are used to approximate the dependence of S-parameters on model parameters at different frequencies. Polynomial coefficients are obtained by solving a set of linear equations. It is shown, that generalized pseudoinverse matrix algorithm, such as skeleton matrix expansion or singular value decomposition, is obligatory for this purpose. Initial sensitivity analysis, one step per model parameter, does not provide enough data to build quadratic metamodel. However, implemented formulae can be easily applied to build linear model. Compared to traditional second-order polynomial model algorithms, the number of sensitivity analysis steps is effectively minimized. The optimization problem is formulated as a set of nonlinear equations y = y*, where y is metamodel response, y* is desired response. This set is solved with modified Levenberg-Marquardt algorithm, which can handle simple box-type constraints. Specific weight factors are used to approach equal ripple, Chebyshev-type response. Test problem is used to illustrate better convergence properties of presented technique, compared to quasi-Newton method.
Pages: 103-107
References
  1. Koziel S., Cheng Q., Bandler J. Space mapping // IEEE Microvawe Magazine. December 2008. P. 105 - 122.
  2. Simpson T., Peplinski J., Koch P., Allen J. Metamodels for computer-based engineering design: Survey and recommendations // Engineering with Computers Journal. July 2001.  V. 17. № 2. P. 129 - 150.
  3. Гантмахер Ф. Р. Теория матриц. М.: Наука.1988. С.32.
  4. Kennedy J., Eberhart R. Particle swarm optimization // Proceedings of IEEE Conference on Neural Networks IV. 1995. P. 1942 - 1948.
  5. Mikki S., Kishk A. Quantum particle swarm optimization for electromagnetics // IEEE Transactions on Antennas and Propagation. Oct. 2006. V. 54. № 10. P.2764 - 2775.
  6. Press W., Teukolsky S., Vetterling W., Flannery B. Numerical Recipes in C. The art of scientific computing / Second edition. - Cambridge: Cambridge University Press. 1992. P. 683 - 688.
  7. Сверхширокополосные микроволновые устройства / под ред. А. П. Креницкогои В. П. Мещанова. М.: Радио и связь. 2001. С. 44 - 45.
  8. Momentum® 3D Planar EM Simulator. Agilent Technologies. URL: www.home.agilent.com.
  9. Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Т. 1 / пер. сангл. В. Я. Алтаева, В. И. Моторина. М.: Мир. 1986. C. 125 - 131.