350 rub
Journal Antennas №12 for 2012 г.
Article in number:
Metamaterial based small sized antennas (Practical aspects)
Authors:
S.N. Bojko, V.G. Veselago, E.A. Vinogradov, A.A. Zhukov
Abstract:
As known, a correlation desired and mainly wavelength dependent restricts in most cases the minimum attainable size of antennas released on ordinary materials. Hence, the following shrinkage of antennas made from ordinary materials is possible only in conjunction with efficiency lowering and essential bandwidth reduction. Nowadays, metamaterials attract much interest of scientific world for its unique properties unreachable by utilizing ordinary materials. In antenna applications, metamaterials with its unordinary properties give extra opportunities: smaller size, higher gain and broader antenna bandwidth. This survey is devoted to small-size metamaterial-based antenna fabrication methods. In the survey, classifications are presented of metamaterials and its antenna applications. Physical boundaries of metamaterial-based antenna realization are given. Antenna applications are determined for the following types of metamaterials: Negative index metamaterials (left-handed media) Electromagnetic band-gap metamaterials; Artificial complex ground planes providing a desired reflective phase of electromagnetic wave; Frequency selective surfaces. Designs of metamaterial-based antenna may be categorized as follows: antenna surrounded by metamaterial; antenna placed under a layer of metamaterial; antenna placed above a layer of metamaterial; antenna printed on a metamaterial substrate; antenna made entirely from metamaterial. From the results of the research made, one can draw conclusions. Tangible antenna shrinkage may be achieved only with two designs: antenna surrounded by metamaterial and antenna made entirely from metamaterial, with all this going on, minimal antenna size possible at this moment makes up a magnitude of the same order as λ/50. Antenna printed on a metamaterial substrate is basically used for broadening operation frequency band. On the whole, antenna made entirely from metamaterial shows better opportunities.
Pages: 32-41
References
  1. Wheeler H.A. Fundamental limitations of small antennas. Proc. of the IRE, December 1947. Р. 1479-1488.
  2. Chu L.J. Physical limitations of omnidirectional antennas // Journal of Applied Physics. December 1948. V. 19. Р. 1163-1175.
  3. Harrington R.F. Effect on Antenna Size on Gain, Bandwidth, and Efficiency // J. Res. Nat. Bur. Stand. Jan/Feb 1960. V. 64-D. Р. 1-12.
  4. Collin R.E. and Rothschield S. Evaluation of Antenna Q // IEEE Trans. Ant. Prop. Jan. 1964. V. AP-12. Р. 23-27.
  5. McLean J.S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas // IEEE Trans. Ant. Prop. May 1996. V. AP-44. № 5. Р. 672-676.
  6. Hansen R.S. Electrically small, superdirective and supercondacting antennas. NewYork: Wiley. 2006.
  7. Киселёв В.П., Сайко В.Г, Ильинов М.Д., Федяев В.Е. Современное состояние исследований малогабаритных антенн, http://www/qrz.ru/schemes/contribute/antenns/small/.
  8. Caloz C., Itoh T. Elektromagnetic Metamaterial: Transmission Line Theory and Microwave Applications. New York: Wiley and IEEE Press. 2005.
  9. Engheta N., Ziolkowski R.W. Metamaterials: Physics and Engineering Explorations. NewYork: WileyandIEEEPress. 2006.
  10. Панченко Б.А., Гизатуллин М.Г. Наноантенны. М.: Радиотехника. 2010.
  11. Веселаго В.В. Электродинамика сред с одновременно отрицательными ε и μ // Успехи физических наук. 1967. Т. 92. C. 517-525.
  12. Pendry J., Holden A., Stewart W., Youngs I. Extremly low frequency plasmons in metallic mesostructures // Phus. Rev. Lett. 1996. V. 1. 76. P. 4773-4776.
  13. Веселаго В.Г., Виноградов Е.А., Голованов В.И., Жуков А.А., Романов А.А., Капустян А.В., Урличич Ю.М., Лаврищев В.П. Волноводное распространение СВЧ-излучения в двухслойном метаматериале // Письма в ЖТФ. 2011. Т. 37. Вып. 5. С. 57-62.
  14. IEEE Transaction on Microvawe Teory and Technigues. 1999. Nov. V. MTT-47. № 11.
  15. IEEE Transaction on Antennas and Propagation (Special Issue on Metamaterials). 2003. Oct. V. AP-51. № 10.
  16. Rahmat-Samii Y. Metamaterials in Antenna Applications: Classification, Design and Applications // Proceedings of the 2006 IEEE International Workshop on Antenna Technology: Small Antennas@ Novel Metamaterials. New York. March 6-8. 2006. Р. 1-4.
  17. Ziolkowski R.W., Kiple A.D. Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas // IEEE Transaction on Antennas and Propagation. Oct. 2003. V. AP-51. № 10. Р. 2626-2640.
  18. Ziolkowski R.W., Erentok A. Metamaterial-Based Efficient Electrically Small Antennas // IEEE Transaction on Antennas and Propagation. July 2006. V. AP-54. № 7. Р. 2113-2130.
  19. Panchenko B.A., Gizatullin M.G., Knyazev N.S., Shabunin S.N. A Conformal Antenna on Base of Coaxial Line with Metamaterial Surroundings // Proceedings of the 3rd European Conference on Antennas and Propagation (ЕuСАР). Berlin. Germany. March 23-27. 2009. Р. 2481-2482.
  20. Erentok A., Ziolkowski R.W. Metamaterial-Insperid Efficient Electrically Small Antennas // IEEE Transaction on Antennas and Propagation. March 2008. V. AP-56. № 3. Р. 691-707.
  21. Ziolkowski R.W., Jin P., Nielsen J.A., Tanielian M.H., Hollowai C.L.Design and experimental verification of Z antennas at UHF frequencies // IEEE Antennas Wireless Propag. Lett. 2009. V. 8. Р. 1329-1332.
  22. Sievenpiper D.L., Zhang R.F. Jimenes-Broas N.G.Alexopolous, E. Yablonovitch. High-Impedance Electromagnetic Surfaces with Forbidden Frequency Band // IEEE Transaction on Microwave Theory and Techniques. Nov. 1999. V. MT-47. № 11. Р. 2059-2074.
  23. Caminita F., Costanzo S., Di Massa G., Maci S., Mauriello G., Guarnieri G., Venneri I. Planar Antennas Integrated with EBG Surfaces Formed by Shorted Strips with interlocking Cactus-Branch-Stubs // Proceedings of the 3rd European Conference on Antennas and Propagation (ЕuСАР). Berlin. Germany. March 23-27. 2009. Р. 3227-3230.
  24. Maagt P., Gonzalo R., Vardaxoglou Y.C., Baracco J.-M. Elektromagnetic Bandgap Antennas and Components for Microwave and (Sub)Millimeter Wave Applications // IEEE Transaction on Antennas and Propagation. Oct. 2003. V. AP-51. № 10. Р. 2667-2677.
  25. Yong-min Lee, Joong-kwan Kim. Front-to-Bask Ratio Improvement of a Microstrip Patch Antenna using an Isolated Soft Surface Structure // Proceedings of the 39th European Microwave Conference. 29 Sept. - 1 Oct. 2009. Rome. Italy. Р. 385-388.
  26. Jackson D.R., Alexopoulos N.G. Gain Enhancement Methods for Printed Circuit Antennas // IEEE Transaction on Antennas and Propagation. Sept. 1985. V. AP-33. № 9. Р. 976-987.
  27. Burocur S.N., Latrach M., Toutain S. Left-Handed Medium effect on the characteristics of a circular patch antenna // Proc. Antennas and Propagation Society International Symposium. 3-8 July 2005. IEEE. V. 1A. Р. 680-683.
  28. Lee D.H., Lee Y., Hao Y., Vardaxoglou Y., Park W.S. Perturbation input impedance matching technique for Fabry-Perot high gain antenna // Proc. Loughborough Antennas and Propagation Conference. 17-18 March 2008. Loughborough. UK. Р. 301-304.
  29. Yang F., Rahmat-Samii Y. Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications // IEEE Transaction on Antennas and Propagation. Oct. 2003. V. AP-51. № 10. Р. 2691-2703.
  30. Dan Qu, Shafai L. Wideband Microstrip Patch Antenna with EBG Substrate // Antennas and Propagation Society International Symposium. 3-8 July 2005. IEEE. V. 2A. Р. 594-597.
  31. Martinez-Vazquez M., Baggen R. Characterization of Printed EBG Surface for GPS Applications // Proc. 2006 IEEE International Workshop on Antenna Technology: Small Antennas @ Novel Metamaterials, New York. March 6-8. 2006. Р. 5-8.
  32. Kiziltas G., Volakis J.L., Kikuchi N. Topology Design Optimization of Dielectric Substrate for Bandwidth Improvement of a Patch Antenna // IEEE Transaction on Antennas and Propagation. Oct. 2003. V. AP-51. № 10. Р. 2732-2743.
  33. Mosallaei H., Sarabandi K. Antenna Miniaturization and Bandwidtn Enhancement Using a Reactive Impedance Substrate // IEEE Transaction on Antennas and Propagation. Sept. 2004. V. AP-52. № 9. Р. 2403-2414.
  34. Ikkonen P., Maslovski S., Simovski C., Tretyakov S. On Artificial Magneto-Dielectric Loading for Improving the Bandwidth Properties of Microstrip Antennas. ArXiv:physics/0509139v1 [physics.class-ph] 16 Sept 2005. Р. 1-22.
  35. Alu A., Bilotti F., Engheta N., Vegni l. Subwavelength, Compact, Resonant Patch Antennas Loaded with Metamaterials // IEEE Transaction on Antennas and Propagation. Jan. 2007. V. AP-55. № 1. Р. 13-25.
  36. Mittra R., Bringuier J., Abdel-Magged M., Rajab K., Gonzalez J.I.Some Novel Techniques for Size Reduction of Microstrip Patch Antennas // Proc. 2006 IEEE International Workshop on Antenna Technology: Small Antennas@ Novel Metamaterials. New York. March 6-8. 2006. Р. 156-159.
  37. Antoniades M.A., Eleftheriades G.V. A Compact and Broadband NRI-TL Metamaterial Monopole Antenna. Proc. 13th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Science Meeting, Toronto, Canada, 24 March 2009. Р. 1-4.
  38. Hall P.S., Liu Q. Dipoles and Loop Antennas Loading. Proc. Loughborough Antennas and Propagation Conference, 17-18 March 2008, Loughborough. UK. Р. 193-196.
  39. Rennings A., Liebig T., Otto S., Caloz C., Wolf I. Highly Directive Resonator Antennas based on Composite Right/Left-Handed (CRLH) Transmission Lines. Proceedings of the 2nd International ITG Conference on Antennas (INIСА), Munich, Germany, March. 2007. Р. 190-194.
  40. Liebig T., Rennings A., Otto S., Caloz C. Erni, D.Comparison Beetwen CRLH Zeroth-Order Antenna and Series-Fed Microstrip Patch Array Antenna. Proceedings of the 3rd European Conference on Antennas and Propagation (ЕuСАР), Berlin, Germany, March 23-27. 2009. Р. 529-532.
  41. Caloz C., Itoh T., Rennings A. CRLH Metamaterial Leaky-Wave and Resonant Antennas // IEEE Antennas and Propagation Magazine. Oktober 2008. V. 50. № 5. Р. 25-38.
  42. Lai A., Itoh T., Caloz C. Composite Right/Left-Handed Transmission Line Metamaterials // IEEE Microwave Magazine. Sept. 2004. Р. 34-50.
  43. Antoniades M.A., Qureshi F., Eleftheriades G.V.Antenna Applications of Negative- Refractive-Index Transmission-Line Metamaterials // Proc. 2006 IEEE International Workshop on Antenna Technology: Small Antennas@ Novel Metamaterials. New York. March 6-8. 2006. Р. 392-395.
  44. Lai A., Leong K., Itoh T. Composite Right/Left-Handed Metamaterial Antennas // Proc. 2006 IEEE International Workshop on Antenna Technology: Small Antennas@ Novel Metamaterials. New York. March 6-8. 2006. Р. 404-407.
  45. Rennings A., Liebig T., Abielmona S., Caloz C., Waldow P.Tri-Band and Dual-Polarized Antenna Based on Composite Right/Left-Handed Transmission Line // Proceedings of the 37th European Microwave Conference on Antennas (EuMС). Munich. Germany. Oct. 2007. Р. 720-723.
  46. Vallecchi A., Albani M., Capolino F. Planar Metamaterial Transverse Equivalent Network and Application to Low-Profile Antenna Designs // Proceedings of the 3rd European Conference on Antennas and Propagation (ЕuСАР). Berlin. Germany. March 23-27. 2009. Р. 861-865.
  47. Rennings A., Mosig J., Bahr A., Caloz C., Ladd M.E., Erni D. A CRLH Metamaterial based RF Coil Element for Magnetic Resonance Imaging at 7 Tesla // Proceedings of the 3rd European Conference on Antennas and Propagation (ЕuСАР). Berlin. Germany. March 23-27. 2009. Р. 3231-3234.
  48. Eleftheriades G.V., Siddiqui O., Iyer A. Transmission Line Models for Negative Refractive Index Media and Associated Implementations Without Excess Resonators // IEEE Microwave and Wireless Components Letters. February 2003. V. 13. № 2. Р. 51-53.
  49. Mittra R. A Critical Look at Metamaterials for Antenna-Related Applications. Journal of Communications Technology and Electronics. 2007. V. 52. № 9. Р. 972-978 (Опубликовано в России: Р. Митра. Критический взгляд на метаматериалы. Радиотехника и электроника. 2007. Т. 52. № 9.С. 1051-1058).