350 rub
Journal Antennas №12 for 2012 г.
Article in number:
Microwave antennas and radiating structures in artificial composite media: history, main trends and prospects
Authors:
E.A. Shorokhova, M.S. Manakhova
Abstract:
One of the promising directions in the creation of a new generation of antennas associated with their construction of artificial composite metamaterials, which have got unique electrical, radiophysical and optical properties that are not present in natural materials. Theoretical and experimental studies show that the use of metamaterials and materials with chiral properties can increase the bandwidth of frequencies, antenna gain, as well as reduce the overall size of microwave devices. In this paper, sufficient detail the history of creation of metamaterials, their classification, indicated the problems and prospects of this trend in microwave technology. The results of numerical simulation of a rectangular microstrip antenna with a T-shaped radiator on the metamaterial substrate and the microstrip antenna located near the metamaterial layer. Modeling of microstrip antennas performed in a program package Ansoft HFSS 12, which is best suited for the calculation of microwave structures containing metamaterials in its design. We have shown that: i) using as a substrate material metamaterial with negative real permittivity and permeability, while holding the geometry of the microstrip antenna can lead to displacement of the minimum S11-parameter to higher frequencies, as well as to increase the gain on the average of 2 times; ii) using of metastructure layer near the microstrip antenna can increase its bandwidth by several times, and gain an average of 3 dB. Our studies suggest the possible use of artificial complex composite materials in the antenna devices of the microwave range to improve their radiating properties. The developed procedure makes it possible to synthesize the design of radiating systems with specified parameters of electromagnetic radiation.
Pages: 11-31
References
  1. Б.А., Нефедов Е.И. Микрополосковые антенны. М.: Радио и связь. 1986.
  2. Седаков А.Ю., Кашин А.В., Шорохова Е.А. Антенны СВЧ с повышенной полосой пропускания // Антенны. 2010. № 7 (158). С. 5-25.
  3. Панченко Б.А., Гизатуллин М.Г. Наноантенны. М.: Радиотехника. 2010.
  4. Слюсар В. Диэлектрические резонаторные антенны. Малые размеры, большие возможности // ЭЛЕКТРОНИКА:НТБ. 2007. №4. С. 89-95.
  5. Engheta N. and R. Ziolkowski, (eds.). Metamaterials: Physics and Engineering Explorations. New York: John Wiley & Sons. 2006.
  6. Bose J.C. On the rotation of plane of polarization of electric waves by a twisted structure // Proc. Roy. Soc. 1998. V. 63. P. 146-152.
  7. Lindman K.F. Om en genom ett isotropt system av spiralformiga resonatorer alstrad rotationspolarisation av de elektromagnetiska vågorna // Öfversigt af Finska Vetenskaps-Societetens förhandlingar. A. Matematik och naturvetenskaper. 1914-1915. V. LVII. № 3. P. 1-32. http://www.biodiversitylibrary.org/item/50732#103.pdf
  8. Kock W.E. Metal-lens antennas // Proceedings of Inst. Radio. Engrs. and Waves and Electrons. November 1946. V. 34. P. 828-836.
  9. Kock W.E. Metallic delay lenses // Bell Sys. Tech. J. 1948. V. 27. P. 58-82.
  10. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Composite medium with simultaneously negative permeability and permittivity // Phys. Rev. Lett. 2000. V. 84. P. 4184-4187.
  11. Wikipedia. Metamaterial. Accessed April. 2009. http://en.wikipedia.org/wiki/Metamaterial
  12. Walser R. Metamaterials: What are they and what are they good for - // Meeting of the American Physical Society. March 20-24, 2000. http://flux.aps.org/meetings/YR00/MAR00/abs/S9240.html
  13. Walser R. Complex mediums II: beyond linear isotropic dielectrics // Proc. SPIE 4467. SPIE - International Society for Optical Engineering. San Diego. CA. USA. 2001.P. 1-15.
  14. Lakhtakia A., Mackay T.G. Meet the metamaterials // Opt. Photon News. 2007 January. V. 18. P. 32-39.
  15. Yablonovitch E. Photonic Crystals as Meta-Materials // Meeting of the American Physical Society. March 20-24, 2000. http://flux.aps.org/meetings/YR00/MAR00/abs/S9240.html
  16. Metamorphose http://www.metamorphose-eu.org/ Accessed. April. 2009.
  17. Pendry J.B., Smith D.R. The quest for the superlens // Sci. Am. 295. 2006. P. 60-67.
  18. Wiltshire M. C. K. Bending of Light in the Wrong Way. // Science. 292. 2001. P. 60-61.
  19. Джексон Дж. Классическая электродинамика / Пер. с англ. Г.В. Воскресенского и Л.С. Соловьева. М.: Мир. 1965. C. 254-255.
  20. Brown J. Artificial dielectrics // Progress in dielectrics. 1960.V. 2. P. 195-225.
  21. Brown J. Artificial dielectrics having refractive indices less than unity // Proc. IEEE. 1953. V. 100. № 62R. P. 51 - 62.
  22. Brown J. and W. Jackson. The properties of artificial dielectrics at centimeter wavelengths // Proc. IEEE. 1955.V. 102B. № 1699R. P. 11-21.
  23. Seeley J. S. and J. Brown. The Use of Artificial Dielectrics in a Beam Scanning Prism // Proc. IEEE. 1958.V. 105C. №. 2735R. P. 93-102.
  24. Carne A. and J. Brown. Theory of Reflections from the Rodded-Type Artificial Dielectrics // Proc. IEEE. 1958.V. 105C. № 2742R. P. 107-115.
  25. Model A. M. Propagation of Plane Electromagnetic Waves in a Space Which Is Filled with Plane Parallel Grids // Radiotekhnika. 1955.V. 10. P. 52-57.
  26. Rotman W. Plasma Simulations by Artificial Dielectrics and Parallel-Plate Media // IRE Trans. Ant. Propag. 1962.V. 10. P. 82-95.
  27. Smith D.R., Vier D.C., Padilla W., Nemat-Nasser S.C., Schultz S.Loop-wire medium for investigating plasmons at microwave frequencies // Appl. Phys. Lett. 1999. V. 75 (10). P. 1425-1427.
  28. Belov P.A., Tretyakov S.A., Viitanen A.J. Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires // J. Electromagn. Waves Applic. 2002. V. 16. P. 1153-1170.
  29. Chen H-T. et al. Active terahertz metamaterial devices // Nature. November. 2006. V. 444. P. 597-600. http://physics.bu.edu/documents/thz.pdf
  30. Щелкунов С., Фриис Г. Антенны (Теория и практика): пер. с англ. М.: Сов. радио. 1955.
  31. Pendry J.B. et al. Magnetism from conductors and enhanced nonlinear phenomena // IEEE Trans. Microw. Theory Tech. 1999. V. 47. P. 2075-2081.
  32. Kostin M.V., Shevchenko V.V. Artificial magnetics based on double circular elements // Proc. of Bianisotropics-94. Perigueux. France. May 18-20. 1994. P. 49-56.
  33. Pocklington H.C. Growth of a wave-group when the group velocity is negative // Nature, 1905. V. 71. P. 607-608.
  34. Patel N. Theory, Simulation, Fabrication and Testing of Double Negative and Epsilon Near Zero Metamaterials for Microwave Applications / Master-s Thesis in Electrical Engineering. California Polytechnic State University, June 2008. http://digitalcommons.calpoly.edu/theses/7/
  35. Tretyakov S.A. et al. Research on negative refraction and backward-wave media: A historical perspective // Radio Laboratory SMARAD Helsinki University of Technology. 2005. http://users.tkk.fi/sergei/slides_tretyakov_latsis.pdf
  36. Shelby R.A., Smith D.R., Schultz S. Experimental Verification of a Negative Index of Refraction // Science. 2001. V. 292. № 5514. P. 77-79. http://people.ee.duke.edu/~drsmith/pubs_smith_group/Shelby_Science_(2001).pdf
  37. Pendry J. B. Negative refraction index makes perfect lens // Phys. Rev. Lett. 2000.V. 85. P. 3966 - 3969.
  38. Notomi M. Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap // Phys. Rev. B. 2000.V. 62. № 16. P. 10696-10705.
  39. Foteinopolou S. and C. Soukoulis. Negative refraction and left-handed behaviour in two-dimensional photonic crystals // Phys. Rev. B. 2003.V. 67. P. 235107.
  40. Parimi P. et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals // Phys. Rev. Lett. 2004. V. 92. № 12. P. 127401.
  41. Sudhakaran S., Y. Hao and C. G Parini. Negative refraction phenomenon at multiple frequency bands from electromagnetic crystals // Microwave and Optical Technology Letters. 2005. V. 45. P. 465 - 469.
  42. Веселаго В.Г. Электродинамика веществ с одновременно отрицательными значениями ε и μ // Успехи физических наук. 1967. Т. 92. № 7. С. 517-526.
  43. Lamb H. On Group-Velocity // Proc. London Math. Soc. 1. 1904.P. 473 - 479.
  44. Schuster A. An Introduction to the Theory of Optics. Edward Arnold. London. 1904.P. 313-318.
  45. Laue M. Die Fortpflanzung der Strahlung in dispergierenden und absorbierenden Medien // Ann. Phys. 1905. V. 18. P. 551.
  46. Мандельштам Л.И. Лекции по оптике, теории относительности и квантовой механике. М.: Наука. 1972. C. 431-437.
  47. Малюжинец Г.Д. // ЖТФ. 1951. Т. 21. Вып. 8. С. 940-942.
  48. Сивухин Д.В. Об энергии электромагнитного поля в диспергирующих средах // Оптика и спектроскопия. 1957. Т. 3. № 4. С. 308-312.
  49. Пафомов В.Е. // ЖТЭФ. 1959. № 36. С. 1853.
  50. Силин Р.А. Волноводные свойства двумерно периодических замедляющих систем // Вопросы радиоэлектроники. Сер.1. Электроника. 1959. Вып. 4. С.11-33.
  51. Veselago V., Braginsky L., Shklover V., Hafner C. Negative Refractive Index Materials // Journal of Computational and Theoretical Nanoscience. 2006. V. 3. P. 1-30.
  52. Силин Р.А. О возможности создания плоскопараллельных линз // Оптика и спектроскопия. 1978. Т. 44. Вып.1. С. 189-191.
  53. Силин Р.А. Оптические свойства искусственных диэлектриков // Изв. вузов. Сер. Радиофизика. 1972. Т. 15. № 6. С. 809-820.
  54. USA Patent № 6791432B2.
  55. Gay-Balmaz P. and Martin O. J. F. Electromagnetic resonances in individual and coupled split-ring resonators // J. App. Phys. 2002.V. 92. № 5. P. 2929-2936.
  56. Marqués R., Median F., and Rafii-El-Idrissi. Role of bianisotropy in negative permeability and left-handed metamaterials // Phys. Rev. E. 2002. V. 65. P. 144440:1-6.
  57. Markŏs P. and Soukoulis C.M. Numerical studies of left-handed materials and arrays of split ring resonators // Phys. Rev. E. 2002. V. 65. P. 036622:1-8.
  58. Markŏs P. and Soukoulis C.M. Numerical studies of left-handed materials and arrays of split ring resonators// Phys. Rev. E. 2002. V. 65. P. 033401:1-4.
  59. Greegor R.B., Parazzoli C.G., Li K., Koltenbah B. E. C., and Tanielian M. Experimental determination and numerical simulation of the properties of negative index of refraction materials //Optics Express.2003.V. 11. № 7. Р. 688-695.
  60. Ozbay E., Aydin K., Cubukcu E., and Bayindir M.Transmission and reflection properties of composite double negative metamaterials in free space // IEEE Trans. Antennas Propagat. 2003.V. 51. № 10. Р. 2592-2595.
  61. Simovski C. R., Belov P. A., and He S. Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators // IEEE Trans. Antennas Propagat. 2003.V. 51. № 10. Р. 2582-2591.
  62. Marqués R., Mesa F., Martel J., and Median F. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial: design, theory and experiments // IEEE Trans. Antennas Propagat. 2003.V. 51. № 10. Р. 2572-2581.
  63. Ziolkowski R. W. Design, fabrication, and testing of double negative metamaterials // IEEE Trans. Antennas Propagat. 2003. V. 51. № 7. Р. 1516-1529.
  64. Ziolkowski R. W. and Heyman E. Wave propagation in media having negative permittivity and permeability // Phys. Rev. E. 2001.V. 64. P. 056625:1-15.
  65. Ziolkowski R. W. Pulsed and CW gaussian beam interactions with double negative metamaterial slabs // Optics Express. 2003.V. 11. № 7. Р. 662-681.
  66. Caloz C., Chang C. C., and Itoh T. Full-wave verification of the fundamental properties of left-handed materials (LHMs) in waveguide configurations // J. App. Phys. 2001.V. 90. № 11. P. 5483-5486.
  67. So P. P. M. and Hoefer W. J. R. Time domain TLM modeling of metamaterials with negative refractive index // IEEE-MTT Int-l Symp. 2004. P. 1779-1782. Fort Worth. TX.
  68. So P. P. M., Du H., and Hoefer W. J. R. Modeling of metamaterials with negative refractive index using 2D-shunt and 3D-SCN TLM networks // IEEE Trans. Microwave Theory Tech. 2005. V. 53. № 4. P. 1496-1505.
  69. Lindell I. V., Tretyakov S. A., Nikoskinen K. I., and Ilvonen S. BW media - media with negative parameters, capable of supporting backward waves // Micr. Opt. Technol. Lett. 2001.V. 31. № 2. Р. 129-133.
  70. Kong J. A., Wu B.-I., and Zhang Y. A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability // Micr. Opt. Technol. Lett. 2002.V. 33. № 2. P. 136-139.
  71. Pacheco J., Grzegorzcyk T. M., Wu B.-I., Zhang Y., and Kong J. A.Wave propagation in homogeneous isotropic frequency-dispersive left-handed media // Phys. Rev. Lett. 2002.V. 89. № 25. Р. 257401:1-4.
  72. Smith D. R., Schurig D., and Pendry J. B. Negative refraction of modulated electromagnetic waves // App. Phys. Lett. 2002.V. 81. № 15. P. 2713-2715.
  73. McCall M. W., Lakhtakia A., and Weiglhofer W. S.The negative index of refraction demystified // Eur. J. Phys. 2002. V. 23. P. 353-359.
  74. Iyer A. K. and Eleftheriades G. V. Negative refractive index metamaterials supporting 2-D waves // in IEEE-MTT Int-l Symp. 2002. V. 2. Seattle. WA. P. 412-415.
  75. Eleftheriades G. V., Iyer A. K., and Kremer P. C. Planar negative refractive index media using periodically L-C loaded transmission lines // IEEE Trans. Microwave Theory Tech. 2002.V. 50. №12. P. 2702-2712.
  76. Caloz C. and Itoh T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line // in Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting. 2002.V. 2. San Antonio. TX. P. 412-415.
  77. Caloz C. and Itoh T. Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter // IEEE Trans. AntennasPropagat. 2004.V. 52. № 5. P. 1159-1166.
  78. Oliner A.A. A periodic-structure negative-refractive-index medium without resonant elements // in URSI Digest. IEEE-AP-S USNC/URSI National Radio Science Meeting. San Antonio. TX. 2002. P. 41.
  79. Oliner A. A. A planar negative-refractive-index medium without resonant elements // in IEEE-MTT Int-l Symp. Philadelphia. PA. 2003. P. 191-194.
  80. Sanada A., Caloz C., and Itoh T. Planar distributed structures with negative refractive index // IEEE Trans. Microwave Theory Tech. 2004. V. 52. № 4. Р. 1252-1263.
  81. Chevalier C.T., Wilson J.D.Frequency Bandwidth Optimization of Left-Handed Metamaterial // NASA/TM-2004-213403. November 2004. http://gltrs.grc.nasa.gov/reports/2004/TM-2004-213403.pdf
  82. Shelby R.A., Smith D.R., Nemat-Nasser S.C., Schultz S. Microwave transmission through a twodimensional, isotropic, left-handed metamaterial // Appl. Phys. Lett. 2001. V. 78.
    P. 489-491. http://people.ee.duke.edu/~drsmith/pubs_smith_group/Shelby_APL_(2001).pdf
  83. Holloway C. L. et al. A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix // IEEE Trans. Antennas Propag. 2003. V. 51. P. 2596-2603.
  84. www.wave-scattering.com/negative.html
  85. Wu M.-F. et. al. Miniaturization of a Patch Antenna with Dispersive Double Negative Medium Substrates // APMC2005 Proceedings. http://www.ee.nus.edu.sg/lwli/Publications/Conferences/2005/2005%20Invited%20b.pdf
  86. US Patent Application № 2008/0258993. Oct. 23, 2008.
  87. US Patent Application № 2008/0048917. Feb. 28, 2008.
  88. Ziolkowski R.W., Erentok A. Metamaterial-Based Efficient Electrically Small Antennas // IEEE Transactions on Antennas and Propagation. 2006. V. 54. № 7. P. 2113-2130.
  89. Пахотин В.А. Излучение электрически короткой антенны из ограниченного объема газоразрядной плазмы // Письма в ЖТФ. 2007. Т. 33. Вып. 8. С. 22-29.
  90. Sui Q., Li C., Li L., Li F. Experimental Study of λ/4 Monopole Antennas in a Left-Handed Meta-Material // Progress In Electromagnetics Research. 2005. № 51. P. 281-293. http://ceta.mit.edu/PIER/pier51/16.0401122.Sui.LL.pdf
  91. Erentok A., Luljak P.L., and Ziolkowski R.W. Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna application // IEEE Transactions on Antennas and Wireless Propagation. 2005. V. 53.  № 1. P. 160-172.
  92. Burokur S.N., Latrach M., Toutain S. Theoretical investigation of a circular patch antenna in the presence of a left-handed mematerial // IEEE Antennas and Wireless Propagation Letters. 2005. V. 4. P. 183-186.
  93. Li B., Wu B., Liang C.-H. Study on high gain circular waveguide array antenna with metamaterial structure // Progress In Electromagnetics Research. 2006. PIER 60. P. 207-219.
  94. Majid H.A., Rahim M.K., Masri T.Microstrip antenna-s gain enhancement using left-handed metamaterial structure // Progress In Electromagnetics Research. 2009. V. 8. P. 235-247.