350 rub
Journal Antennas №4 for 2011 г.
Article in number:
Dual-Subband Array with Cosecant-Shape Far-Field Pattern
Authors:
E. V. Ovchinnikova, A. A. Sokolov
Abstract:
Practically in all areas of radio engineering it is required to ensure functioning or in a wide band, or on several frequency ranges. In the majority of the published works the combined aerials in which narrow-band radiators and distributive systems, the on each range are applied are resulted. Thus to be spent physical combination of aerials of different ranges. However, modern technologies allow to create the broadband or combined antenna systems realizing radiation of several wave bands in one antenna cloth. In particular interest represents creation of antenna system which can replace with itself antenna systems of a secondary radar and antenna system of the state radar-tracking identification. The antenna array of a radar consists of the broadband elements raised by broadband distributive system (a Fig. 1). The array consists of 16 elements, each of which represents exponential slot (a Fig. 2). Results of mathematical and electrodynamic modeling are presented on fig. 4,5. On fig. 6 the kind a cut of an antenna array is shown. On it materials of which the experimental specimen of an antenna array is made are allocated. The description of a design of an antenna array further follows. The general view of distributive system is presented on fig. 7. Tests of a breadboard model of an antenna array were spent in the anechoic chamber. Appearance of the stand is presented on fig. 8. The stand description is more low resulted. On fig. 9 pattern in azimuthal and elevation the planes, received as a result of processing by the program of experimental data are resulted. On fig. 10 pattern received as a result of electrodynamic modeling are resulted. On fig. 11 results of experimental researches of characteristics of the coordination in ranges interesting us are shown. On fig. 12 peak distributions of three specimen of a linear antenna array, on frequency of 1090 MHz received as a result of laboratory researches, and the peak distribution calculated by numerical methods by means of computer modeling are presented. From fig. 12 it is visible that the results received experimentally, differ from settlement not considerably. Thus, the experimental research of a dual-band antenna array is spent. Also, pattern in azimuthal and elevation planes and the peak distributions received by means of numerical electrodynamic modeling and as a result experiment are presented. The dual-band antenna array in the printing execution, forming cosecant pattern. The done work allows to predict use of the given experience of working out, for creation of broadband one-aperture aerials on the strip lines working in a L-range (1030-1090 MHz, 1250-1350 MHz, 1450-1550 MHz), for radar stations.
Pages: 14-20
References
  1. Страхов А. Ф. Автоматизированные антенные измерения. М.: Радио и связь. 1985.
  2. Воронин Е. Н., Нечаев Е. Е., Шашенков В. Ф. Реконструктивные антенные измерения. М.: Наука. 1995.
  3. Воскресенский Д. И., СтепаненкоВ. И., Филиппов В. С.и др. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток: Учеб. пособие для вузов. М.: Радиотехника. 2003.
  4. Hansen, R. C., Phased Array Antennas.a wiley-interscience publication. John Wiley & Sons, INC. 1998.
  5. Cheng Shi, Hallbjorner Paul, Rydberg Anders Printed Slot Planar Inverted Cone Antenna for Ultrawideband Applications // IEЕЕantennas and wireless propagation letters. 2008. V. 7. P. 18-21.
  6. Shin, J., Schaubert, D. H., A Parameter study of stripline-fed vivaldi notch-antenna arrays // IEEE transactions on antennas and propagation. 1999. V. 47. № 5. May. Р. 879-886.
  7. Тревис, Суранов, Батоврин и др. LabView: практикум по основам измерительных технологий. М.: ДМК Пресс. 2005.
  8. Суранов А. Я.Lab view 7: справочник по функциям. М.: ДМК Пресс. 2005.
  9. Евдокимов Ю., Линдваль В., ЩербаковГ. LabVIEW для радиоинженера. От виртуальной модели до реального прибора. М.: ДМК Пресс. 2007.
  10. Бутырин П. А., Васьковская Т. А., Каратаев В. В., МатеринкинС. В. Автоматизация физических исследований и эксперимента, компьютерные измерения и виртуальные приборы на основе LabVIEW. М.: ДМК Пресс. 2005.
  11. Денисенко В. В., Козлов Ю. И., Соловьев Г. К., Тоболев А. К., Шабанов Р. И., Шишло А. В.Радиоизмерения в специализированных безэховых камерах // Радиотехника. 2008. №10.
  12. Федосов В. П., Нестеренко А. К. Цифровая обработка сигналов в LabVIEW. М.: ДМКПресс. 2007.