350 rub
Journal Antennas №11 for 2011 г.
Article in number:
Control of thermal sources in the near zone of coaxial monopole antenna for microwave hyperthermia of biological tissues
Authors:
V. V. Komarov, I. I. Novruzov
Abstract:
Such technologies as microwave hyperthermia and ablation find wide practical application in modern medicine for thermal therapy of tumor. Exposure of pathological organ by microwave energy can be successfully carried out using coaxial antennas with operating frequency 2.45 GHz. One of these devices - monopole type antenna with ceramic tip is considered in present study. Coupled electromagnetic and thermal fields in the near zone are simulated with the help of 2D axial-symmetrical model on the finite element method. Two possible cases of biological tissues physical properties changing by means of biocompatible liquids (plant oil and salt solver) are considered. It is shown that increasing of biotissue loss factor leads to not only the intensification of heating process but to the extension of coagulation zone. Obtained theoretical results can be useful in further studies of described medicine technologies.
Pages: 10-13
References
  1. Cavagnaro, M., Amabile, C., Bernardi, P., et al. Design and realization of a new type of interstitial antenna for ablation therapies // Proceedings of the 39th European Microwave Conference. 2009. Rome. Italy. P. 878-881.
  2. Kikuchi, S., Saito, K., Takahashi, M., Ito, K., Control of heating pattern for interstitial microwave hyperthermia by a coaxial-dipole antenna ? aiming at treatment of brain tumor // Electronics and Communications in Japan. 2007. Part 1. V. 90. № 1. P. 1486-1492.
  3. Prakash, P., Theoretical modeling for hepatic microwave ablation // The Open Biomedical Engineering Journal. 2010. V. 4. P. 27-38.
  4. Hurter, W., Reinbold, F., Lorentz, W. J., A dipole antenna for interstitial microwave hyperthermia // IEEE Trans. MicrowaveTheoryandTechniques. 1991. V. 39. № 6. P. 1048-1054.
  5. Макаров В. Н., Ющенко Г. В. Сравнительный анализ микроволнового и радиочастотного нагрева при тепловой абляции опухолей // Биомедицинская радиоэлектроника. 2009. № 2. C. 3-10.
  6. Brace, C. L., Laeseke, P. F., van der Weide, D. W., Lee, F. T., Microwave ablation with a triaxial antenna: results in ex vivo bovine liver // IEEE Trans. MicrowaveTheoryandTechniques. 2005. V. 53. № 1. P. 215-220.
  7. Комаров В. В., Новрузов И. И. Анализ электромагнитных и тепловых полей интерстициального микроволнового аппликатора // Биомедицинская радиоэлектроника. 2011. № 4. C. 57-62.
  8. Hardie, D., Sangster, A. J., Cronin, N. J., Coupled field analysis of heat flow in the near field of a microwave applicator for tumor ablation // Electromagnetic Biology and Medicine. 2006. V. 25. P. 29-43.
  9. Metaxas, A. C., Meredith, R. J., Industrial microwave heating // London: Peter Peregrinus. 1983.
  10. Патент РФ № 2132186. Средство для повышения токопроводимости биологических тканей при локальной гипертермии новообразований // Е. Л. Белоусов, Б. К. Долотов, В. В. Шкарини др. 1999.
  11. Рогов И. А., Некрутман С. В. Свервысокочастотный нагрев пищевых продуктов. М.: Агропромиздат. 1986.