350 rub
Journal Antennas №7 for 2010 г.
Article in number:
Microwave Antennas with Broadened Bandwidth
Authors:
A.V. Kashin, A.Yu. Sedakov, E.A. Shorokhova
Abstract:
Development of small size microwave antennas having broadened bandwidth for today is an actual scientific-and-technical task as its successful solution causes future development of various function air born instruments. This paper presents the review of different type microwave broadband and super-broadband antenna systems possessing minimal mass-overall characteristics. There are considered notch and scimitar antennas not providing the super-broadband frequency range, but they are reliable, strong and rather easy-to-implement; microstrip antennas require more high-tech approach when manufactured, but they are more space saving; antennas on the basis of symmetric slot line providing rather broad passband; various fractal antennas and arrays made of them opening up great possibilities of using them as multiband antennas. It is also shown that at the present stage of the antenna technique development the main attention should be paid to creation of principally new antenna production technologies and new materials the using of which changes sufficiently electric and mass-overall characteristics of the antennas.
Pages: 5-25
References
  1. Резников Г.Б. Самолетные антенны. М.: Сов. радио. 1962.
  2. Сверхширокополосные антенны / под ред. Л.С. Бененсон. М.: Мир. 1964.
  3. Лось В.Ф. Микрополосковые и диэлектрические резонаторные антенны. САПР-модели: методы математического моделирования. М.: Радиотехника. 2002.
  4. Aanandan C.K., Mohanan P., Nair K.G. Broad-band gap coupled microstrip antenna // IEEE Trans. 1990. V. AP-38. No. 10. P. 1581-1586.
  5. Kumar G., Gupta K.C. Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas // IEEE Trans. 1985. V. AP-33. No. 2. P. 173-178.
  6. Nakano H., Nagami K, et al. A spiral antenna backed by a conducting plane reflector // IEEE Trans. 1986. V. AP-34. No. 6. P. 791-796.
  7. Wang J.H., Tripp V.K. Design of multioctave spiral-mode microstrip antennas // IEEE Trans. 1991. V.AP-39. No. 3. P. 332-335.
  8. Fano R.M. Theoretical limitation on the broadband matching of arbitrary impedances. // J. Franclin Inst. 1950. V. 249. No. 1-2. P. 57-83, 139-154.
  9. Lee K.F., Luk K.M., Tong K.F., Yung Y.L., Huynh T. Experimental study of the rectangular patch with a U-shaped slot // Proceedings of Antenna and Propagation Society International Symposium. 21-26 July 1996. V. 1. P. 10-13.
  10. Huynh T., Lee K.F. Single-layer single-patch wideband microstrip antenna // Electronics Letters. 1995. V. 31. No. 16. P. 1310-1312.
  11. Luk K.M., Lee K.F., Tam W.L. Circular U-slot patch with dielectric superstrate // Electronics Letters. 1997. V. 33. No. 12. P. 1001-1003.
  12. Wong K.L, Hsu W.H. Broadband triangular microstrip antenna with U-shaped slot // Electronics Letters, 1997. V. 33. No. 25. P. 2085-2087.
  13. Guo Y.X., Luk K.M., et al. Double U-slot rectangular patch antenna // Electronics Letters. 1998. V. 34. No. 19. P. 1806-1807.
  14. Авдеев В.Б., Ашихмин А.В., Некрылов В.М., Пастернак Ю.Г. Моделирование сверхширокополосных печатных щелевых антенн бегущей волны // Антенны. 2006. Вып. 8(111). С. 50-55.
  15. Альхарири М. Широкополочные излучатели и антенные решетки СВЧ-диапазона на основе симметричной щелевой линии // Антенны. 2005. Вып. 12(103). С. 11-18.
  16. MandelbrotB.B.Thefractalgeometryofnature. SanFrancisco. Freeman. 1983.
  17. YangX., ChiochettiJ., PapadopoulosD., SusmanL. Fractal antenna elements and arrays // Applied Microwave and Wireless, 1999. No. 5. P. 34-36.
  18. Gianvittorio J. Fractal antennas: Design, Characterization, and Applications. University of California. Los Angeles. 2000.
  19. Baliarda C.P., Romeu J., Cardama A. The Koch monopole: a small fractal antenna // IEEE Trans. 2000. V. AP-48. No. 11. P. 1773-1781.
  20. Best S.R.On the performance properties of the Koch fractal and other bent wire monopoles // IEEE Trans. 2003. V. AP-51. No. 6. P. 1292-1300.
  21. Потапов А.А. Фракталы в радиофизике и радиолокации. М.: Логос. 2002.
  22. Puente C., Claret J., Sagues F. et al. Multiband properties of a fractal tree antenna generated by electrochemical deposition // Electronics Letters, 1996. V. 32. No. 25. P. 2298-2299.
  23. Borja C., Romeu J. On the behavior of Koch island fractal boundary microstrip patch antenna // IEEE Trans. 2003. V. AP-51. No. 6. P. 1281-1291.
  24. Gianvittorio J., Rahmat-Samii Y. Fractal antennas: a novel antenna miniaturization technique, and applications // IEEE Trans. on AP Magazine. 2002. V. AP-44. No. 1. P. 20-36.
  25. Baliarda C.P., Romeu J., Pous R., Cardama A. On the behavior of the Serpinsky multiband fractal antenna // IEEE Trans. 1998. V. AP-46. No. 4. P. 517-523.
  26. Слюсарь В.И. Фабер-технологии: сам себе конструктор и фабрикант // Конструктор. 2002. № 1. С. 5-7.
  27. Неганов В.А., Осипов О.В. Отражающие, волноведущие и излучающие структуры с киральными элементами. М.: Радио и связь. 2006.
  28. Росляков Н.М., Тенякова Н.А., Воробьев О.Б. Излучение кольцевой рамочной антенны, окруженной магнитодиэлектрическойсферой // Радиотехника и электроника. 2004. Т. 49. № 10. С. 1210-1217.
  29. Ziolkowski R.W., Kipple A.D. Application of double negative materials to increase the power radiated by electrically small antennas // IEEE Trans. 2003. V. AP-51. No. 10. P. 2626-2640. 
  30. Математические методы прикладной электродинамики / под ред. С.Б. Раевского. М.: Радиотехника. 2007.
  31. Bilotti F., Vegni L. Chiral cover effects on microstrip antennas // IEEE Trans. 2003. V. AP-51. No. 10. P. 2891-2898.
  32. www.metacloak.net
  33. Petrov R., Tatarenko A., Srinivasan G., Mantese J.V. Antenna miniaturization with ferrite-ferroelectric composites // Mic. Opt. Tech. Lett. 2008. V. 50. P. 3154.
  34. Петров Р.В., Бичурин И.М., Сринивасан Г. Исследование свойств антенн с ферритовыми элементами // Антенны. 2009. Вып. 8(147). С. 50-55.