350 rub
Journal Antennas №2 for 2010 г.
Article in number:
3D Electromagnetic Simulation of Antenna Enclosed by a Radome with CST MICROWAVE STUDIO®
Authors:
N. N. Kisel?, S. G. Grishchenko, K. A. Serov
Abstract:
This article concerns the application of CST MICROWAVE STUDIO® (CST MWS) to the simulation of electrically large automotive structures, such as antenna enclosed by a radome. Radome scattering is a very complex theory and appropriate radome design for antenna has to include many parameters like radome wall, joints and joint distribution. The design and numerical results are presented. The antenna operates at 9.375 GHz and was simulated using the CST MWS. It is a specialist tool for the 3D electromagnetic simulation of high frequency components. CST MWS uses the advantages of both Cartesian and tetrahedral meshing in one 3D EM simulator and permits able to choose the method and the mesh best suited to a particular structure. CST MWS is ideal for such applications since the geometry can be easily imported and modified using the powerful user interface, the accurate and robust Perfect boundary approximation (PBA) approximation is exploited, the linear scaling of memory with increasing mesh cells and the ability to simulate broadband in one single simulation. CST MWS quickly gives for users an insight into the electromagnetic behaviour of high frequency antenna designs. Transient Solver which is, as a result of its efficient memory scaling, ideal for such electrically large structures - the dish diameter in this example is approximately 7 wavelengths in size and dish of radome is approximately 15 wavelengths in size. CST MWS allows the user to easily create animations from any defined frequency and time-domain field monitors created. Numerical results show the nearfield and farfield total electric field on the antenna with radome.
Pages: 38-43
References
  1. КаплунВ.А.Антенные радиопрозрачные обтекатели (этапы исследований и разработок) // Радиотехника. 2002. №11. C. 6-15.
  2. Бойко М.А., Титов А.Н., ЯстребовВ.П.Обтекатели РЛС самолетов нового поколения // Радиотехника. 2002. №11. C. 39-40.
  3. Richard K. Gordon, R. Mittra. Finite Element Analysis of Axisymmetric Radomes // IEEE Trans. Antenna Propagat. July 1993. V. AP-41. No7. P. 975-981.
  4. Surendra Singh, Donald R. Wilton. Analysis of an Infinite Periodic Array of Slot Radiators with Dielectric Loading // IEEE Trans. Antenna Propagat. 1991. V. AP-39. No. 2. P.190-196.
  5. Ruey-Shi Chu Analysis of an Infinite Phased Array of Dipole Elements with RAM Coating on Ground Plane and Covered with Layered Radome // IEEE Trans. Antenna Propagat. 1991. V. AP-39. No. 2. P. 164 - 176.
  6. BayardP.R. Analysis of infinite Arrays of Microstrip-Fed dipoles printed on protruding dielectric substrates and covered with a dielectric radome // IEEE Trans. Antenna Propagat. 1994. V. AP-42. No. 1. P.82 -89.
  7. Sadigh Ali, Ercument Arvas. Deformation of Horizontal Radiation Pattern of TV Transmitting Antennas Due to a Thin Dielectric Radome // IEEE Trans. Antenna Propagat. 1992. V. AP-40. No. 8. August P. 776-782.
  8. Yurchenko V.B., Ayhans A., Nosich A.I. Numerical Optimization of a Cylindrical Reflector-in-Radome Antenna System // IEEE Trans. Antenna Propagat. 1999. V. AP-47. No.4. P. 668-673.
  9. Altintas A., Ouardani S., Yurchenko V.B. Approximating circular radome by dielectric slab in tha antenna simulatons // Microwave Physics and techniques. London. 1997. P. 291-296.
  10. Sembiam R. Rengarajan, Edmond S. Gillespie. Asymptotic Approximations in Radome Analysis // IEEE Trans. Antenna Propagat. 1998. V. AP-36. No. 3. P.635-644.
  11. Arvas Ercument, PonnapalliSaila Scattering Cross Section of a small Radome of Arbitrary Shape // IEEE Trans. Antenna Propagat. 1989. V. AP-37. No. 5. P.655-658.
  12. КнязеваЛ.В.Методы расчета характеристик системы антенна-обтекатель // Антенны. 1998. Вып.1. (40). C.66-75.
  13. Крылов В.П., Подольхов И.В., Ромашин В.Г., Шадрин А.П. Метод математического профилирования антенных обтекателей // Радиотехника. 2002. №11. C. 20-24.
  14. Грищенко С.Г. Алгоритм квазиоптического моделирования антенных обтекателей // Антенны. 2007. №5. C. 40-47.
  15. Грищенко С.Г. Исследование характеристик тел вращения произвольной формы в квазиоптической области // Изв. вузов. Сер. Радиоэлектроника. 1993. Т. 36. №2. C. 69−72.
  16. Кисель Н.Н. Исследование влияния обтекателя на характеристики бортовых антенн // Рассеяние электромагнитных волн: Таганрог. Межвед. сб.науч.-техн.статей. Вып. 14 ТРТУ. 2006. C. 87 -96.
  17. Weiland T. A discretization method for the solution of Maxwell's equations for six component fields//Electronics and Communications AEU. 1977. V. 31. No. 3. P.116-120.
  18. Weiland T. Time domain electromagnetic field computation with finite difference methods // International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 1996. V. 9. P. 259-319.
  19. Yee K.S. Numerical solution of initial boundary value problems involving Maxwell-s equations in isotropic media // IEEE Trans. Antenna Propagat. May 1966. V. AP-14. No. 3. P.302-307.
  20. Кюн Р. Микроволновые антенны. М.: Судостроение. 1967.