350 rub
Journal Antennas №9 for 2009 г.
Article in number:
Realization of the Given Amplitude Distribution on the Plane Aperture of the Phased Antenna Array with an Arbitrary Boundary Form
Authors:
V. A. Voloshin, A. Yu. Larin, O. V. Ovodov
Abstract:
An iteration algorithm has been formulated for calculating the row and column factors providing the given equivalent amplitude distrinutions along the axes OX and OY of the plane phased antenna array (PAA) with the rectangular structure of the radiator arrangement. As given distributions we choose the known amplitude ones of the two equidistant linear antenna arrays, the radiator number in which coincides with the number of columns and rows of the plane aperture respectively. An iteration algorithm is based on the account of the known number of rows and columns of the plane aperture with the rectangular structure of the radiator arrangement. The numbers of columns and rows may be both even and odd. The algorithm consists of the following sequential steps:
as initial approximations of the desired column and row amplitude factors we choose known amplitude distributions of the two linear antenna arrays, for example of the cosine-square form on the pedestal;
the iteration procedure begins with defining the sum of the column radiator amplitudes;
the new row amplitudes are obtained by dividing into sums of the column amplitudes and normalized to the maximum value;
the sums of the new row radiator amplitudes are determined;
the new column amplitudes are obtained by dividing into sums of the row amplitudes and normalized to the maximum value;
taking into account that the amplitude of each radiator equals the product of the row and column amplitudes we calculate the amplitude distributions of the two equivalent linear antenna arrays of the plane aperture (the projections of the radiator amplitudes of the plane aperture on the axis OX and OY) and define the maximum deflections of the realized equivalent and given amplitude distributions along the two orthogonal axes of the plane aperture. The run (going) out from the iteration procedure occurs in the case when two maximum deflections are less than some minor magnitude eps = 0,00001.
Eight iterations are sufficient for the majority versions of the decreasing amplitude distributions. There have been given the results of calculating the amplitude distributions for the five versions of the aperture geometry demonstrating the algorithm capabilities. In the given examples the number of radiators in the rows and columns is even. We have shown the feasibility to account the faulty channels on the PAA aperture in the amplitude distribution calculating.
Pages: 12-16
References
- Крицкий С.В., Козлов К.В., Андрианов В.И.Оптимизация амплитудного распределения в эллиптической апертуре АФАР // Антенны. 2004. №8-9(87-88). С.65 - 71.
- Гостюхин В.Л., Трусов В.Н., Гостюхин А.В. Выбор амплитудного распределения по апертуре активных ФАР в режиме передачи при наличии ограничений на максимальную амплитуду выходных сигналов активных модулей и энергетический потенциал // Антенны. 2009. №3(142). С.10 - 19.
- Волошин В.А., Ларин А.Ю., Оводов О.В. Вычислительный алгоритм управления амплитудно-фазовым распределением плоской АФАР с произвольной формой границы раскрыва // Антенны. 2008. №10(137). С.3 - 8.
- Стрижков В.А. Направленные свойства и уровень бокового излучения слабовыпуклых фазированных антенных решеток // Антенны. 2007. №1. С.7 - 27.