350 rub
Journal Antennas №5 for 2009 г.
Article in number:
Experimental Study of High-Resolution Uhf Direction Finding
Authors:
Yu. B. Nechaev, E. S. Makarov
Abstract:
In this paper problem of high-resolution UHF direction-finding with four-element antenna array with radii 0,1 wavelength on frequency 31,5 MHz is considered. Large amount of real-world signals emanating from far-field test generator placed at different DOAs was recorded and than processed off-line to define performance of DOA estimation. Firstly it was discovered by authors that direction-finding errors mostly depend on array manifold perturbations through bias in angle-of-arrival estimates rather than on signal-to-noise ratio. So it seems obviously to estimate antenna array manifold over entire field of view using sources at known positions. However, in UHF such approach becomes complicated and time-consuming as wavelength is large and far-field condition is fulfilled on sufficiently large distances. So, in this paper optimal number of calibration points in sense of resolution probability and minimum variance of estimates is defined empirically to minimize time to define real array manifold. Another discovered fact is increasing of phase shifts between array elements due to mutual coupling. Rely on this fact it is possible to estimate factor of such increasing via 1-3 measurements and than use this factor in estimation of real array manifold. Thirdly, iterative extension of Pierre-Kaveh calibration method is proposed in which calibration matrix is calculated in predefined sector of view instead of full space calculation. Size and location of sector are defined from results of initial direction-finding subject to estimated factor of shifts in-creasing. Performance of MUSIC-based radio direction-finder is investigated under application of examined calibration techniques and resolution about 25° is achieved with reasonable accuracy of AOA estimates for antenna array radii of 0,1 wavelength on frequency 31,5 MHz.
References
  1. Марпл-мл. С. Л. Цифровой спектральный анализ и его приложения: Пер. с англ. М.: Мир. 1990.
  2. Krim, H., Two Decades of Array Signal Processing Research: The Parametric Approach // IEEE Signal Processing Magazine. July1996. V. 13, N. 4. P. 67-94.
  3. Дрогалин В. В. Алгоритмы оценивания угловых координат источников излучений, основанные на методах спектрального анализа // Успехи современной радиоэлектроники. 1998. № 2. С. 3-17.
  4. Кукес И. С. Основы радиопеленгации. М.: Сов. радио. 1964.
  5. Саидов А. С. Проектирование автоматических радиопеленгаторов. М.: Радио и связь. 1997.
  6. Денисов В. П. Фазовые радиопеленгаторы. Томск. 2002.
  7. Хачатуров В. Р. Влияние случайных фазовых ошибок приемных каналов антенной решетки на качество разрешения источников внешнего излучения // Антенны. 2000. № 2. С. 55-59.
  8. Нечаев Ю. Б. Сравнительный анализ сверхразрешающих алгоритмов радиопеленгации // Сб. трудов XIII Междунар. научн.-техн. конфер. «Радиолокация, навигация, связь» (RLNC-2007). Воронеж. 2007. С. 2102-2109.
  9. Viberg, M., Error Modeling and Calibration for High Resolution DOA Estimation // 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, Darmstadt. Germany. July 2008.
  10. Li, Q., An Overview of Self-Calibration In Sensor Array Processing. Proceedings of 6th International Symposium on Antennas, Propagation and EM Theory. 2003. Issue 28. P. 279-282.
  11. Pierre, J., Experimental performance of calibration and direction-finding algorithms // Proc. IEEE ICASSP. 1991. V. 2. P. 1365-1368.
  12. Lemma, A. N., Experimental analysis of antenna coupling for high-resolution DOA estimation algorithms. SPAWC '99. 1999. P. 362-365.
  13. Mir, H. S., Self-calibration of an airborn array. - IEEE Transactions on Signal Processing. 2007. V. 55, Issue 6. P. 2486-2496.
  14. Friedlander, B., Direction finding in the presence of mutual coupling // IEEE Transactions on Antennas and Propagation. 1991. V. 39, N. 3. P. 273-284.
  15. Paulraj, A., Direction of arrival estimation by eigenstructure method with unknown sensor gain and phase // Proc. ICASSP 1998. 1985. P. 640-643.
  16. See, C., Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases // Electron. Lett. 1994. V. 30. P. 373-374.
  17. Ng, B. C., Sensor-array calibration using a maximum-likelihood approach // IEEE Trans on AP. 1996. 44(8). P. 827-835.
  18. Нечаев Ю. Б. Pelengator 1.0. Свидетельство об официальной регистрации программы для ЭВМ № 2008610672 / С. А. Зотов, Е. С. Макаров, Ю. Б. Нечаев.
  19. Ботов В. А. Калибровка антенной решетки для пеленгатора с угловым разрешением коррелированных сигналов // Антенны. 2008. № 7-8. С. 87-91.
  20. Винокурова Н. Н., Кузьменко Ю. В., Нечаев Ю. Б. Характеристики малобазовой пеленгационной решетки на ограниченном экране // Антенны. 2005. № 7-8. С. 90-93.