350 rub
Journal Antennas №2 for 2009 г.
Article in number:
Сomparision Characteristics Fractal Antennas on the Basis of Curve Different Types
Authors:
A. P. Kondrateva
Abstract:
Recent efforts by several researchers around the world to combine fractal geometry with electromagnetic theory have led to a plethora of new and innovative antenna designs. In this report, we provide a comprehensive overview of recent developments in the rapidly growing field of fractal antenna engineering. Fractal antenna engineering research has been primarily focused in two areas: the first deals with the analysis and design of fractal antenna elements, and the second concerns the application of fractal concepts to the design of antenna arrays. Fractals have no characteristic size, and are generally composed of many copies of themselves at different scales. These unique properties of fractals have been exploited in order to develop a new class of antenna-element designs that are multi-band and compact in size. On the other hand, fractal arrays are a subset of thinned arrays, and have been shown to possess several highly desirable properties, including multi-band performance. Low side lobe levels, and the ability to develop rapid beamforming algorithms based on the recursive nature of fractals. Fractal elements and arrays are also ideal candidates for use in reconfigurable systems.
Pages: 53
References
  1. Mandelbrot В. В. The Fractal Geometry of Nature. - New York, W. H. Freeman, 1983.
  2. Kim Y. and Jaggard D.L. The Fractal Random Array. - Proceedings of the IEEE, 1986, 74, 9, pp 1278 - 1280.  
  3. Puente C. Fractal Design of Multiband Antenna Arrays. - Elec. Eng. Dept. Univ. Illinois, Urbana-Champaign, Dec. 1993, ECE 477 term project. 
  4. Puente C., Pous R. Diseсo Fractal de Agrupaciones de Antenas. - IX Simposium Nacional URSI, Las Palmas, Sept. 1994, vol. I, pp. 227-231.
  5. Yang X., Chiochetti J., Papadopoulos D. and Susman L. Fractal Antenna Elements and Arrays. - Applied Microwave & Wireless, May 1999, pp. 34-46.
  6. Best S.R. The Koch Fractal Monopole Antenna: The Significance of Fractal Geometry in Determining Antenna Performance. - Proceedings of the 2001 Аntenna Аpplications Symposium. Allerton Park Monticello, Illinois. Sept.19-21, 2000.
  7. Vinoy K.J. Fractal Shaped Antenna Elements for Wideand Multi-band Wireless Applications. - Thesis of PhD Dissertation. The Pennsylvania State University, 2002. 
  8. Vinoy K.J.; Abraham J.K.; Varadan, V.K. Reply to comments on «On the Relationship between Fractal Dimension and the Performance of Multi-Resonant Dipole Antennas using Koch Curves». ?  IEEE Transactions on Antennas and Propagation, June 2004, vol. 52, Issue 6, pp 1627-1628.  
  9. Gonzalez-Arbesu J.M., Rius J.M. and Romeu J. Comments on: On the relationship between fractal dimension and the performance of multiresonant dipole antennas using Koch curves. - IEEE Trans. on Antennas and Propagation, June 2004, vol. 52, Issue 6, pp 1626-1627.
  10. GianvittorioJ. Fractal Antennas: Design, Characterization, and Applications.  ? University of California, Los Angeles, 2000.
  11. Tsachtsiris G., Karaboikis M., Soras C. and Makios V. A Novel Fractal Rectangular Curve Printed Monopole Antenna for Portable Terminals. - URSI International Symposium on Electromagnetic Theory, Pisa, Italy, May 23-27, 2004.
  12. WO Patent № 01/54225 A1. International Patent Classification7 H01Q 1/36. Space-Filling Miniature Antennas,  Puente Baliarda, Carles; Rozan, Edouard, Jean Louis; Anguera Pros, Jaime. - July 26, 2001.
  13. Karaboikis M., Soras C., Tsachtsiris G. and Makios V. Four-element Printed Monopole Antenna Systems for Diversity and MIMO Terminal Devices. - Proceedings of the 17th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Oct.1-3, 2003, pр. 193-196. 
  14. Cohen N. U.S. Patent № 6140975A. H01Q 1/48. Fractal Antenna Ground Counterpoise, Ground Planes and Loading Elements. - Oct. 31, 2000.
  15. Karaboikis M., Soras C., Tsachtsiris G., Papamichael V. and Makios V. Multi element antenna systems for diversity and MIMO terminal devices. - Laboratory of Electromagnetics. Department of Electrical and Computer Engineering. University of Patras, Patras, Greece - 2004. 
  16. Karaboikis M., Soras C., Tsachtsiris G. and Makios V. Three-branch Antenna Diversity Systems on Wireless Devices Using Various Printed Monopoles. - 2003 IEEE International Symposium on Electromagnetic Compatibility, Istanbul, May 11-16, 2003.
  17. Zhu J., Hoorfar A., Engheta N. Bandwidth, Cross-Polarization, and Feed-Point Characteristics of Matched Hilbert Antennas. - IEEE Antennas and Wireless Propagation Letters, 2003, vol. 2, pр. 2-5.  
  18. Аnguera J., Puente C., Martinez E. and Rozan E. The Fractal Hilbert Monopole: a Two-Dimensional Wire. - Microwave And Optical Technology Letters, Jan.20, 2003, vol. 36, no. 2, pр. 102-104.
  19. Zhu J., Hoorfar A., Engheta N. Peano Antennas. - IEEE Antennas and Wireless Propagation Letters, 2004, vol.3, Issue 1, pр.71-74.
  20. Anguera J., Puente C., Soler J. Miniature Monopole Antenna based on the Fractal Hilbert Curve. - in Proc. 2002 IEEE AP-S Int. Symp., vol. 4, San Antonio, TX, 2002, pp. 546-549.
  21. Sagan H., Space-Filling Curves. -  New York, Springer-Verlag, 1994, р.193. 
  22. Vinoy K. J., Jose K. A., Varadan V. K., and Varadan V. V., Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications. - Microwave Opt. Technol. Lett., vol. 29, no.4, May 2001, pp. 215-219.
  23. Best S. R., A comparison of the performance properties of the Hilbert curve fractal and meander line monopole antennas. ?  Microwave Opt. Technol. Lett., vol. 35, no.4, Nov. 2002, pp. 258-262.
  24. Romeu J. and Blanch S., A three dimensional Hilbert antenna. ?  in Proc. 2002 IEEE AP-S Int. Symp., vol. 4, San Antonio, TX, 2002, pp. 550-553. 
  25. Peitgen H. O., Jurgens H., and Saupe D. Chaos and Fractals. - New York, Springer-Verlag, 1990.
  26. Puente C., Romeu J., Pous R., Cardama On the Behavior of the Sierpinsky Multiband Fractal Antenna ?  IEEE Transactions on Antennas and Propagation, April 1998, vol.46, no. 4, pp. 517-524.
  27. WO Patent № 01/82410 A1.H01Q1/32, 1/36, 5/00. Multilevel Advanced Antenna for Motor Vehicles - Nov.1, 2001. 
  28. Romeu J., Soler J. Generalized Sierpinski Fractal Multiband Antenna - IEEE Transactions On Antennas And Propagation, August 2001, vol. 49, no. 8. 
  29. Song C. T. P., Hall Peter S. and Ghafouri-Shiraz H. Perturbed Sierpinski Multiband Fractal Antenna With Improved Feeding Technique  ? IEEE Transactions On Antennas And Propagation, May 2003, vol. 51, no. 5. 
  30. Шишлова А. Ломаная антенна ? http://cad.ntu-kpi.kiev.ua/.
  31. Xu L. and Chia M. Y. W., Multiband Characteristics of Two Fractal Antennas. - Microwave and Optical Technolopy Letters, Nov. 1999, 23, 4, pp. 242-245.
  32. Puente C., Claret J., Sagues F., Romeu J., Lopez-Salvans M. Q., and Pous R.
  33. Multiband Properties of a Fractal Tree Antenna Generated By Electrochemical Deposition. - IEE Electronics Letters, December 1996, 32, 25, pp. 2298-2299. 
  34. Sindou M., Ablart G., and Sourdois C., Multiband and Wideband Properties of Printed Fractal Branched Antennas. - IEE Elecrronics Letters, Feb. 1999, 35, 3, pp. 181-182.
  35. Wemer D. H., Bretones A. R., and Long B. R., Radiation Characteristics of Thin-wire Ternary Fractal Trees. - IEE Electronics Letters, April 1999, 35, 8, pp. 609-610.
  36. Gianvittorio J. P. and Rahmat-Samii Y., Fractal Element Antennas: A Compilation of Configurations with Novel Characteristics. - IEEE lntemationel Symposium on AP Digest, Salt Lake City, Utah, July 2000, vol. 3, pp. 1688-1691.
  37. Petka J.S. and Werner D. H., Dense 3-D Fractal Tree Structures as Miniature End-loaded Dipole Antennas. - IEEE intemational Symposium on Antennas and Propagation Digest, San Antonio, Texas, June 2002, vol. 4, pp. 94-97.
  38. Федоров П.Н., Мачты-деревья. ?  Конструктор, 2001, №2, с.18.
  39. Varadan V.K., Vinoy K.J. , Kollakompil J.A., and Varadan V.V., United States Patent № 6,525,691. H01Q 01/38. Miniaturized conformal wideband fractal antennas on high dielectric substrates and chiral layers.