350 rub
Journal Antennas №10 for 2009 г.
Article in number:
Optimization of the Printed Multilayer Lens Geometry
Authors:
S. V. Ballandovich, G. A. Kostikov, A. A. Ptashkin, M. I. Sugak
Abstract:
This paper presents results of the designing and of experimental research on a printed lens multilayered antennas array. In order to successfully transform a spherical wave of the feed into the flat one, individual geometry of each element must be selected in a peculiar way. For this a preliminary step must to be taken. The step implies designing a phase response of the propagated field on the typical sizes of printed elements. Previous publications fail to address the practical issue of the correlation between the number of layers, geometry of the elements and potentially achievable characteristics of arrays. The paper presented aims at filling this gap. The analysis of printed elements characteristics was carried out in an idealized waveguide with two electric and two magnetic walls. Printed elements of four simple forms ensuring bilinear polarization were investigated: the square, the round, the crosswise and the crosswise with the capacitor loadings on the end. For the form of each element complex coefficients of S-matrix were calculated. The high-quality radiation pattern is achieved through defining the necessary number of layers using results of the calculation. An approximated formula was implied to compute both experimental and theoretical radiation patterns for the three-layer printed arrays. Set of the curves given in the results allows one to draw the optimum interlayer distance.
Pages: 43-48
References
  1. Milne, R. Dipole Array Lens // IEEE Trans. Antennas Propagat. 1982. V. AP-30, Nо. 4. July. P. 704-712.
  2. Amaro, L. R., Datthanasombat, S., Prata, A., and Harrell, J. A. Development of Ka-Band Inflatable Layered-Lens Technology // November 15, 2001 IPN Progress Report 42-147.
    Romisch, S., Popovic, D., Shino, N., Lee, R., Popovic, Z. Multibeam Discrete Lens Arrays with Amplitude-Controlled Steering // IEEE MTT-S Digest. 2003.
  3. Popovic, D. and Popovic, Z., Multibeam antennas with polarization and angle diversity // IEEE Trans. Antennas Propagat. 2002. V. 50. May. P. 651-657.
  4. McGrath D. T. Planar Three-Dimensional Constrained Lenses // IEEE Trans. 1986. AP-34. January. No. 1, P. 46-50.
  5. Porter, B. G., Rauth, L. L., Mura, J. R., and Gearhart, S. S. Dual-Polarized Slot-Coupled Patch Antennason Duroid with Teflon Lenses for 76.5-GHz Automotive Radar Systems // IEEE Trans. 1999. Dec. OnAP-47, No. 12. P. 1836-1842.
  6. Балландович С. В., Костиков Г. А., Саломатов Ю. П., Сугак М. И. Сравнительный анализ точности математических моделей печатных отражательных антенных решеток // Мат. 64-й НТК НТОРЭС им. Попова 2009 г. СПб. СПбГЭТУ «ЛЭТИ». 2009. С. 6-7.
  7. Wan, Ch. and Encinar, J. A., Efficient Computation of Generalized Scattering Matrix for Analyzing Multilayered Periodic Structures // IEEE Trans. 1995. Nov. OnAP-43. No. 11.
    P. 1233-1242.
  8. Обуховец В. А., Касьянов А. О. Микрополосковые отражательные антенные решетки. М.: Радиотехника. 2006.
  9. Балландович С. В., Костиков Г. А., Сугак М. И. Проектирование печатных отражательных антенных решеток с применением метода фазового синтеза // Мат. 18-й Междунар. Крымской конференции «СВЧ Техника и телекоммуникационные технологии». Севастополь. 2008. С. 415-416.
  10. Балландович С. В., Костиков Г. А., Сугак М. И. Печатные отражательные антенные решетки с диаграммой направленности специальной формы // Антенны. 2008. №6. C. 45-50.