E.I. Antonova1, A.B. Achilov2, N.A. Lengesova3, N.V. Firsova4, E.V. Balacuk5, D.A. Saifutdinova6
1–6 Scientific Research Center for Fundamental and Applied Problems of Bioecology and Biotechnology Ulyanovsk State Pedagogical University named after I.N. Ulyanov (Ulyanovsk, Russia)
1 antonov_67@mail.ru, 2 a.achilow@inbox.ru, 3 lengesova@yandex.ru, 4 n-firsova@mail.ru, 5 balacyxa@mail.ru, 6 dinasajfutdinova17@gmail.com
This article delineates the outcomes of developing an indigenous multiplex test system protocol, leveraging xMAP-ASPE-xTAG technology, for the detection of gene mutations, exemplified by BRAF, MITF-M, and CDKN2A, in cutaneous lesion samples with a preliminary histopathological diagnosis of dysplastic nevus with a pigment component. The study was conducted to assess the probability of malignant transformation of dysplastic nevus with a pigment component into melanoma. The multiplex assay simultaneously identified mutations in the BRAF (rs113488022; p.V600E; c.1799T>A), MITF-M (rs149617956; p.E318K; c.952G>A), and CDKN2A (rs121913386, p.P114L, c.341C>T; rs121913387, p.R58*, c.172C>T; rs121913388, p.R80*, c.238C>T; rs121913389, p.W110*, c.330G>A; rs1057519852, p.W110*, c.329G>A) genes within a single analyte. The resultant protocol parameters were defined according to lesion area, total and target DNA (gene) concentrations, optimal reagent concentrations, and microsphere quantity. Varied reagent concentrations and incubation times facilitated the standardization and optimization of experimental conditions, thereby achieving acceptable sensitivity and robust performance in the detection of the analyzed gene mutations. Validation of the obtained results was performed, and specificity was determined. Mutational analysis revealed histological criteria characteristic of dysplastic nevi (DN). BRAF gene mutations (rs113488022; p.V600E; c.1799T>A) were identified in three out of four samples. One sample exhibited mutations in three genes—BRAF (rs113488022; p.V600E; c.1799T>A), MITF-M (rs149617956; p.E318K; c.952G>A), and CDKN2A (rs121913386; p.P114L; c.341C>T)—the presence of which constitutes an initial stage of melanocytic neoplasia, reflects hereditary predisposition to melanoma development, and indicates dysregulation of the cell cycle and proliferation. Furthermore, the identified germline mutation in the MITF-M gene (p.E318K) signifies a high risk of developing cutaneous malignant melanoma. This work is conducted within the framework of developing an indigenous diagnostic test system utilizing xMAP-ASPE-xTAG technology for the early diagnosis and identification of predisposition to melanoma development.
Antonova E.I., Achilov A.B., Lengesova N.A., Firsova N.V., Balacuk E.V., Saifutdinova D.A. Molecular profiling of melanocytes (displastic nevus with a pigment component). Technologies of Living Systems. 2025. V. 22. № 4. Р. 32-41. DOI: https://doi.org/10.18127/ j20700997-202504-04 (In Russian).
- Andea A.A. Molecular testing for melanocytic tumors: a practical update. Histopathology. 2022. V. 80. P. 150–165.
- Spaccarelli N., Drozdowski R., Peters M.S., Grant-Kels J.M. Dysplastic nevus part II: Molecular/genetic profiles and management. Journal of the American Academy of Dermatology. 2023. V. 88. Is. 1. P. 13–20.
- Kucharski D., Kleczek P., Jaworek-Korjakowska J., Dyduch G., Gorgon M. Semi-supervised nests of melanocytes segmentation method using convolutional autoencoders. Sensors. 2020. V. 20. P. 1546. DOI: 10.3390/s20061546
- Xavier-Junior J.C.C., Ocanha-Xavier J.P. Dysplastic melanocytic nevus: Are molecular findings the key to the diagnosis? Annals of Diagnostic Pathology. 2022. V. 60. P. 152006.
- Wei-Wen S., Chung-Hsing C. Nevi, dysplastic nevi, and melanoma. Molecular and immune mechanisms involving the progression. Tzu Chi Medical Journal. 2022. V. 34. (1). P. 1–7.
- Frischhut N., Zelger B., Andre F., Zelger B.G. The spectrum of melanocytic nevi and their clinical implications. Journal der Deutschen Dermatologischen Gesellschaft. 2022. V. 20. Is. 4. Р. 483–504.
- Lorbeer F.K., Rieser G., Goel A. et al. Distinct senescence mechanisms restrain progression of dysplastic nevi. bioRxiv. 2023. V. 14. P. 548818. DOI: 10.1101/2023.07.14.548818
- Elder D.E., Duncan L.M., Elenitsas R., et al. Dysplastic naevus”. WHO Classification of Skin Tumours. 2023. V. 12. 5th ed. Lyon (France): International Agency for Research on Cancer.
- Shea C.R., Prieto V.G., Shachaf C.M., Florell S.R. Grading melanocytic dysplasia: updated histopathologic criteria. Journal of Cutaneous Pathology. 2024. P. 1–9. DOI: 10.1111/cup.14744
- Prkaˇcin I., Šamija I., Filipovi´c N. et al. Frequency of BRAF mutations in dysplastic nevi, lentigo maligna, and melanoma In Situ. J. Clin. Med. 2024. V. 13. P. 4799. DOI: 10.3390/ jcm13164799
- Schneckenreither G., Tschandl P., Rippinger C. et al. Reproduction of patterns in melanocytic proliferations by agent-based simulation and geometric modeling. PLoS Comput Biol. 2021. V. 17(2). P. e1008660. DOI: 10.1371/journal. pcbi.1008660
- Chun-On P., Hinchie A.M., Beale H.C. et al. TPP1 promoter mutations cooperate with TERT promoter mutations to lengthen telomeres in melanoma. Science. 2022. V. 378. P. 664–668.
- Antonova E.I., Firsova N.V., Achilov A.B. i dr. Razrabotka xmap-protokola ASPE detekcii mutacij genov v obrazcah displasticheskogo nevusa kozhi. Nauchnyj medicinskij vestnik Yugry. 2025. T. 43. № 1. S. 16–22. (in Russian).
- Toussi A., Mans N., Welborn J., Kiuru M. Germline mutations predisposing to melanoma. J. Cutan. Pathol. 2020. V. 47. P. 606–616.
- Dilshat R., Fock V., Kenny C. et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. Cancer BiologyGenetics and Genomics. eLife. 2021. V. 10. P. e63093. DOI: 10.7554/eLife.63093
- Gelmi M.C., Houtzagers L.E., Strub T. et al. MITF in normal melanocytes, cutaneous and uveal melanoma: a delicate balance. Int. J. Mol. Sci. 2022. V. 23. P. 6001. DOI: 10.3390/ijms23116001
- Guhan S.M., Artomov M., McCormick S. et al. Cancer risks associated with the germline MITF(E318K) variant. Scientific Reports. 2020. V. 10(1). P. 17051.
- Karczewski K.J., Francioli L.C., Tiao G. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020. V. 581(7809). P. 434–443.
- Vu H.N., Dilshat R., Fock V., Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res. 2021. V. 34. P. 13–27.
- Wallingford C.K., Maas E.J., Howard A. et al. MITF E318K: A rare homozygous case with multiple primary melanoma. Pigment Cell Melanoma Res. 2024. V. 37. P. 68–73.
- Ciccarese G., Dalmasso B., Bruno W. et al. Clinical, pathological and dermoscopic phenotype of MITF p. E318K carrier cutaneous melanoma patients. J. Transl. Med. 2020. V. 18 (1). P. 78.
- Aebischer V., Abu-Ghazaleh A., Metzler G. et al. Histopathologic abundance of pigmentation correlates with disease-specific survival in malignant melanoma but is not independent of current AJCC pT stage. Pigment Cell Melanoma Res. 2023. V. 36. P. 512–521.
- Cabaço L.C., Tomás A., Pojo M., Barral D. C. The dark side of melanin secretion in cutaneous melanoma aggressiveness. Frontiers in Oncology. 2022. V. 12. Article 887366. DOI: 10.3389/fonc.2022.887366
- Derrien A.-C., Rodrigues M., Eeckhoutte A. et al. Germline MBD4 Mutations and Predisposition to Uveal Melanoma. J. Natl. Cancer Inst. 2020. V. 113. P. 80–87.
- Chalyj M.E., Ohobotov D.A. Afanas'evskaya E.V. i dr. Rol' tkanevogo rezonansnogo vzaimodejstviya v vyyavlenii onkologicheskih zabolevanij. Tekhnologii zhivyh sistem. 2022. T. 19. № 1. S. 5–13. (in Russian).

