L.Kh. Pastushkova1, A.G. Goncharova2, D.N. Kashirina3, I.M. Larina4
1–4 State Research Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)
1 lpastushkova@mail.ru, 2 goncharova.anna@gmail.com, 3 daryakudryavtseva@mail.ru, 4 irina.larina@gmail.com
Space flights have a significant gravitational and radiation impact on the cellular and systemic levels of the body's functions, which leads to many manifestations in the cardiovascular system (CVS). The mechanism of these changes has not been fully characterized. The study of molecular networks involved in the compensation of dysfunctional CVS disorders during long-term space flights using proteomics methods is relevant.
Objective: analysis of molecular networks involved in the compensation of dysfunctional CVS disorders during long-term space flights in "dry spots" of blood.
Contextual analysis of the direction of changes in the concentration of reliably different proteins, in terms of their impact on biological processes, mainly affecting the functional and structural state of blood vessels and the heart, was performed based on the results of visualization of protein-process relationships (ANDvisio program). This made it possible to compile a preliminary version of the biological processes occurring in the body, in which reliably changing proteins participate during space flights.
The practical significance lies in the possibility of using the results to assess the risks of cardiovascular events during long-term space flights.
Pastushkova L.Kh., Goncharova A.G., Kashirina D.N., Larina I.M. Analysis of molecular networks involved in compensation of dysfunctional cardiovascular system´s disorders during long-term space flights in "dry spots" of blood. Technologies of Living Systems. 2025. V. 22. № 3. Р. 5-16. DOI: https://doi.org/10.18127/j20700997-202503-01 (In Russian).
- Delp M.D., Charvat J.M., Limoli C.L. et al. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Sci. Rep. 2016. V. 28. № 6. Article 29901. DOI: 10.1038/srep29901
- Sharma S.N., Meller L.L.T., Sharma A.N., Amsterdam E.A. Cardiovascular Adaptations of Space Travel: A Systematic Review. Cardiology. 2023 V. 148(5). P. 434–440. DOI: 10.1159/000531466
- Li C., Pan Y., Tan Y., et al. PINK1-Dependent Mitophagy Reduced Endothelial Hyperpermeability and Cell Migration Capacity Under Simulated Microgravity. Front. Cell Dev. Biol. 2022. V. 7. № 10. Article 896014. DOI: 10.3389/fcell.2022.896014
- Zaharov S.Yu., Rudenko E.A., Novikova O.N., Baranov M.V. Serdechno-sosudistye zabolevaniya u lyotchikov-kosmonavtov posle zaversheniya lyotnoj deyatel'nosti. Medicina ekstremal'nyh situacij. 2020. T. 22(2). S. 193–198. (in Russian).
- Yudina M.N. Kompleks programmnyh bibliotek dlya analiza molekulyarnyh setej kletki. Omskij nauchnyj vestnik. 2018. № 6 (162). S. 265–270. DOI:10.25206/1813-8225-2018-162-265-270 (in Russian).
- Kashirina D.N., Pastushkova L.H., Goncharova A.G. i dr. Markery otdalennyh riskov razvitiya izmenenij miokarda pod vliyaniem kosmicheskogo poleta i ego modeliruemyh effektov na Zemle: poisk markerov proteomnymi metodami. Tekhnolo-gii zhivyh sistem. 2024. T. 21. № 2. S. 5−17. DOI: https://doi.org/10.18127/j20700997-202402-0 (in Russian).
- Dietz K.J., Jacquot J.P., Harris G. Hubs and bottlenecks in plant molecular signalling networks. New Phytol. 2010. V. 188(4). P. 919–938. DOI: 10.1111/j.1469-8137.2010.03502.x
- Holbrook-Smith D., Trouillon J., Sauer U. Metabolomics and Microbial Metabolism: Toward a Systematic Understanding. Annu. Rev. Biophys. 2024. V. 53(1). P. 41–64. DOI: 10.1146/annurev-biophys-030722-021957
- Summer G., Kuhn A.R., Munts C. et al. A directed network analysis of the cardiome identifies molecular pathways contributing to the development of HFpEF. J. Mol. Cell Cardiol. 2020. V. 144. P. 66–75. DOI: 10.1016/j.yjmcc.2020.05.008
- Shi J., Yang Y., Cheng A. et al. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 2020. V. 319(3). P. H613–H631. DOI: 10.1152/ajpheart.00220.2020
- Louis S.F., Zahradka P. Vascular smooth muscle cell motility: From migration to invasion. Exp. Clin. Cardiol. 2010. V. 15(4). P. e75–85.
- Magnusson A., Halldorsson H., Thorgeirsson G., Kjeld M. Endothelin secretion is regulated by cyclic AMP and phosphatase 2A in endothelial cells. J. Cell Physiol. 1994. V. 161(3). P. 429–434. DOI: 10.1002/jcp.1041610305
- Jankowich M., Choudhary G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc. Med. 2020. V. 30(1). P. 1–8. DOI: 10.1016/j.tcm.2019.01.007
- Wei A., Gu Z., Li J. et al. Clinical Adverse Effects of Endothelin Receptor Antagonists: Insights From the Meta-Analysis of 4894 Patients From 24 Randomized Double-Blind Placebo-Controlled Clinical Trials. J. Am. Heart Assoc. 2016. V. 5(11). Article e003896. DOI: 10.1161/JAHA.116.003896
- Packer M., McMurray J.J.V., Krum H. et al. ENABLE Investigators and Committees. Long-Term Effect of Endothelin Receptor Antagonism With Bosentan on the Morbidity and Mortality of Patients With Severe Chronic Heart Failure: Primary Results of the ENABLE Trials. JACC Heart Fail. 2017. V. 5(5). P. 317–326. DOI: 10.1016/j.jchf.2017.02.021
- Bhandari S.S., Davies J.E., Struck J., Ng L.L. Plasma C-terminal proEndothelin-1 (CTproET-1) is affected by age, renal function, left atrial size and diastolic blood pressure in healthy subjects. Peptides. 2014. V. 52. P. 53–57. DOI: 10.1016/j.peptides.2013.12.001
- Jankowich M.D., Wu W.C., Choudhary G. Association of Elevated Plasma Endothelin-1 Levels With Pulmonary Hypertension, Mortality, and Heart Failure in African American Individuals: The Jackson Heart Study. JAMA Cardiol. 2016. V. 1(4). P. 461–469. DOI: 10.1001/jamacardio.2016.0962
- Carreño J.E., Apablaza F., Ocaranza M.P., Jalil J.E. Hipertrofia cardiaca: eventos moleculares y celulares [Cardiac hypertrophy: molecular and cellular events]. Rev. Esp. Cardiol. 2006. V. 59(5). P. 473–486.
- Dupuis L.E., Berger M.G., Feldman S. et al. Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly.
J. Mol. Cell Cardiol. 2015. V. 84. P. 70–80. DOI: 10.1016/j.yjmcc.2015.04.007 - Ade C.J., Bemben D.A. Differential MicroRNA expression following head-down tilt bed rest: implications for cardiovascular responses to microgravity. Physiol. Rep. 2019. V. 7(9). P. e14061. DOI: 10.14814/phy2.14061
- Kruchinina T.K., Vasichkina E.S., Egorov D.F., Tatarskij B.A. Provodyashchaya sistema serdca u detej: strukturnye osobennosti i rol' v formirovanii narushenij ritma serdca. Rossijskij vestnik perinatologii. 2011. № 6. S. 30–36. (in Russian).
- Ercan E. Effects of aerospace environments on the cardiovascular system. Anatol. J. Cardiol. 2021. V. 25(Suppl 1). P. 3–6. DOI: 10.5152/AnatolJCardiol.2021.S103
- Krittanawong C., Isath A., Kaplin S. et al. Cardiovascular disease in space: A systematic review. Prog. Cardiovasc. Dis. 2023. V. 81. P. 33–41. DOI: 10.1016/j.pcad.2023.07.009
- Maier J.A., Cialdai F., Monici M., Morbidelli L. The impact of microgravity and hypergravity on endothelial cells. Biomed. Res. Int. 2015. V. 2015. Article 434803. DOI: 10.1155/2015/434803
- Mitchell A., Pimenta D., Gill J. et al. Ahmad H, Bogle R. Cardiovascular effects of space radiation: implications for future human deep space exploration. Eur. J. Prev. Cardiol. 2019. V. 26(16). P. 1707–1714. DOI: 10.1177/2047487319831497
- Infanger M., Ulbrich C., Baatout S. et all. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J. Cell Biochem. 2007. V. 101(6). P. 1439–1455. DOI: 10.1002/jcb.21261
- Baselet B., Rombouts C., Benotmane AM. et all. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int. J. Mol. Med. 2016. V. 38(6). P. 1623–1641. DOI: 10.3892/ijmm.2016.2777
- Hendry J.H., Akahoshi M., Wang L.S. et al. Radiation-induced cardiovascular injury. Radiat. Environ. Biophys. 2008. V. 47(2). P. 189–193. DOI: 10.1007/s00411-007-0155-7
- Yan X., Sasi S.P., Gee H. et al. Cardiovascular risks associated with low dose ionizing particle radiation. PLoS One. 2014. V. 9(10). Article e110269. DOI: 10.1371/journal.pone.0110269
- Wuu Y.R., Hu B., Okunola H. et al. LET-Dependent Low Dose and Synergistic Inhibition of Human Angiogenesis by Charged Particles: Validation of miRNAs that Drive Inhibition. iScience. 2020. V. 23(12). Article 101771. DOI: 10.1016/j.isci.2020.101771
- Vernice N.A., Meydan C., Afshinnekoo E., Mason C.E. Long-term spaceflight and the cardiovascular system. Precis. Clin. Med. 2020. V. 3(4). P. 284–291. DOI: 10.1093/pcmedi/pbaa022
- Garikipati V.N.S., Arakelyan A., Blakely E.A. et al. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells. 2021. V. 10(2). P. 387. DOI: 10.3390/cells10020387
- Yarilin A.A. Apoptoz: priroda fenomena i ego rol' v norme i pri patologii. Aktual'nye problemy patofiziologii. Pod red. B.B. Moroza. M.: Medicina. 2001. S. 13–56. (in Russian).
- Kim C.J., Choe Y.J., Yoon B.H. et al. Patterns of bcl-2 expression in placenta. Pathol. Res. Pract. 1995. V. 191(12). P. 1239–1244. DOI: 10.1016/S0344-0338(11)81132-5
- Cotrupi S., Ranzani D., Maier J.A. Impact of modeled microgravity on microvascular endothelial cells. Biochim. Biophys. Acta. 2005. V. 1746(2). P. 163–168. DOI: 10.1016/j.bbamcr.2005.10.002
- Pavela J., Sargsyan A., Bedi D. et al. Surveillance for jugular venous thrombosis in astronauts. Vasc Med. 2022. V. 27(4). P. 365–372. DOI: 10.1177/1358863X221086619
- Wang Y., Li C., Wang R. et al. PIEZO1 Promotes the Migration of Endothelial Cells via Enhancing CXCR4 Expression under Simulated Microgravity. Int. J. Mol. Sci. 2024. V. 25(13). P. 7254. DOI: 10.3390/ijms25137254
- Duffy A.M., Bouchier-Hayes D.J., Harmey J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6482
- Zhang Y., Lu T., Wong M. et al. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. FASEB J. 2016. V. 30(6). P. 2211–2224. DOI: 10.1096/fj.201500121
- Siamwala J.H., Macias B.R., Healey R. et al. Spaceflight-Associated Vascular Remodeling and Gene Expression in Mouse Calvaria. Front. Physiol. 2022. V. 13. Article 893025. DOI: 10.3389/fphys.2022.893025
- Herault S., Fomina G., Alferova I. et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur. J. Appl. Physiol. 2000. V. 81(5). P. 384–390. DOI: 10.1007/s004210050058
- Herault S., Fomina G., Alferova I. et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur. J. Appl. Physiol. 2000. V. 81(5). P. 384–390. DOI: 10.1007/s004210050058
- Baevsky R.M., Baranov V.M., Funtova I.I. et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. (1985). 2007. V. 103(1). P. 156–161. DOI: 10.1152/japplphysiol.00137.2007
- Cooke W.H., Ames J.E. IV., Crossman A.A. et al. Nine months in space: effects on human autonomic cardiovascular regulation. J. Appl. Physiol. (1985). 2000. V. 89(3). P. 1039–1045. DOI: 10.1152/jappl.2000.89.3.1039
- Norsk P., Asmar A., Damgaard M., Christensen N.J. Fluid shifts, vasodilation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 2015. V. 593. P. 573–584.
- Alfrey C.P., Udden M.M., Leach-Huntoon C. et al. Control of red blood cell mass in spaceflight. J. Appl. Physiol. 1996. V. 81. P. 98–104.
- Goncharov I.N., Pastushkova L.H., Koloteva M.I. i dr. Proteomnye issledovaniya sostoyaniya organizma pri vtorichnoj ge-morragicheskoj purpure posle dlitel'nyh kosmicheskih poletov. Biomedicinskaya radioelektronika. 2022. T. 25. № 2–3. S. 5–14. (in Russian).
- Waters W.W., Ziegler M.G., Meck J.V. Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J. Appl. Physiol. 2002. V. 92. P. 586–594.
- Smith N., Lopez R.A., Silberman M. Distributive Shock. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2024.
- Yuan M., Alameddine A., Coupé M. et al. Effect of Chinese herbal medicine on vascular functions during 60-day head-down bed rest. Eur. J. Appl. Physiol. 2015. V. 115(9). P. 1975–1983. DOI: 10.1007/s00421-015-3176-y
- Demiot C., Dignat-George F., Fortrat J.O. et al WISE 2005: chronic bed rest impairs microcirculatory endothelium in women. Am. J. Physiol. Heart Circ. Physiol. 2007. V. 293(5). P. H3159–3164. DOI: 10.1152/ajpheart.00591.2007
- Navasiolava N.M., Dignat-George F., Sabatier F. et al. Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers. Am. J. Physiol. Heart Circ. Physiol. 2010. V. 299(2). P. H248–256. DOI: 10.1152/ajpheart.00152.2010
- Yuan M., Custaud M.A., Xu Z. Multi-System Adaptation to Confinement During the 180-Day Controlled Ecological Life Support System (CELSS) Experiment. Front. Physiol. 2019. V. 10. P. 575. DOI: 10.3389/fphys.2019.00575
- Navasiolava N., Yuan M., Murphy R. et al. Vascular and Microvascular Dysfunction Induced by Microgravity and Its Analogs in Humans: Mechanisms and Countermeasures. Front. Physiol. 2020. V. 11. Article 952. DOI: 10.3389/fphys.2020.00952

