350 rub
Journal Technologies of Living Systems №3 for 2025 г.
Article in number:
Analysis of molecular networks involved in compensation of dysfunctional cardiovascular system´s disorders during long-term space flights in "dry spots" of blood
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202503-01
UDC: 57.042 + 577.2
Authors:

L.Kh. Pastushkova1, A.G. Goncharova2, D.N. Kashirina3, I.M. Larina4

1–4 State Research Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)

1 lpastushkova@mail.ru, 2 goncharova.anna@gmail.com, 3 daryakudryavtseva@mail.ru, 4 irina.larina@gmail.com

Abstract:

Space flights have a significant gravitational and radiation impact on the cellular and systemic levels of the body's functions, which leads to many manifestations in the cardiovascular system (CVS). The mechanism of these changes has not been fully characterized. The study of molecular networks involved in the compensation of dysfunctional CVS disorders during long-term space flights using proteomics methods is relevant.

Objective: analysis of molecular networks involved in the compensation of dysfunctional CVS disorders during long-term space flights in "dry spots" of blood.

Contextual analysis of the direction of changes in the concentration of reliably different proteins, in terms of their impact on biological processes, mainly affecting the functional and structural state of blood vessels and the heart, was performed based on the results of visualization of protein-process relationships (ANDvisio program). This made it possible to compile a preliminary version of the biological processes occurring in the body, in which reliably changing proteins participate during space flights.

The practical significance lies in the possibility of using the results to assess the risks of cardiovascular events during long-term space flights.

Pages: 5-16
For citation

Pastushkova L.Kh., Goncharova A.G., Kashirina D.N., Larina I.M. Analysis of molecular networks involved in compensation of dysfunctional cardiovascular system´s disorders during long-term space flights in "dry spots" of blood. Technologies of Living Systems. 2025. V. 22. № 3. Р. 5-16. DOI: https://doi.org/10.18127/j20700997-202503-01 (In Russian).

References
  1. Delp M.D., Charvat J.M., Limoli C.L. et al. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Sci. Rep. 2016. V. 28. № 6. Article 29901. DOI: 10.1038/srep29901
  2. Sharma S.N., Meller L.L.T., Sharma A.N., Amsterdam E.A. Cardiovascular Adaptations of Space Travel: A Systematic Review. Cardiology. 2023 V. 148(5). P. 434–440. DOI: 10.1159/000531466
  3. Li C., Pan Y., Tan Y., et al. PINK1-Dependent Mitophagy Reduced Endothelial Hyperpermeability and Cell Migration Capacity Under Simulated Microgravity. Front. Cell Dev. Biol. 2022. V. 7. № 10. Article 896014. DOI: 10.3389/fcell.2022.896014
  4. Zaharov S.Yu., Rudenko E.A., Novikova O.N., Baranov M.V. Serdechno-sosudistye zabolevaniya u lyotchikov-kosmonavtov posle zaversheniya lyotnoj deyatel'nosti. Medicina ekstremal'nyh situacij. 2020. T. 22(2). S. 193–198. (in Russian).
  5. Yudina M.N. Kompleks programmnyh bibliotek dlya analiza molekulyarnyh setej kletki. Omskij nauchnyj vestnik. 2018. № 6 (162). S. 265–270. DOI:10.25206/1813-8225-2018-162-265-270 (in Russian).
  6. Kashirina D.N., Pastushkova L.H., Goncharova A.G. i dr. Markery otdalennyh riskov razvitiya izmenenij miokarda pod vliyaniem kosmicheskogo poleta i ego modeliruemyh effektov na Zemle: poisk markerov proteomnymi metodami. Tekhnolo-gii zhivyh sistem. 2024. T. 21. № 2. S. 5−17. DOI: https://doi.org/10.18127/j20700997-202402-0 (in Russian).
  7. Dietz K.J., Jacquot J.P., Harris G. Hubs and bottlenecks in plant molecular signalling networks. New Phytol. 2010. V. 188(4). P. 919–938. DOI: 10.1111/j.1469-8137.2010.03502.x
  8. Holbrook-Smith D., Trouillon J., Sauer U. Metabolomics and Microbial Metabolism: Toward a Systematic Understanding. Annu. Rev. Biophys. 2024. V. 53(1). P. 41–64. DOI: 10.1146/annurev-biophys-030722-021957
  9. Summer G., Kuhn A.R., Munts C. et al. A directed network analysis of the cardiome identifies molecular pathways contributing to the development of HFpEF. J. Mol. Cell Cardiol. 2020. V. 144. P. 66–75. DOI: 10.1016/j.yjmcc.2020.05.008
  10. Shi J., Yang Y., Cheng A. et al. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 2020. V. 319(3). P. H613–H631. DOI: 10.1152/ajpheart.00220.2020
  11. Louis S.F., Zahradka P. Vascular smooth muscle cell motility: From migration to invasion. Exp. Clin. Cardiol. 2010. V. 15(4). P. e75–85.
  12. Magnusson A., Halldorsson H., Thorgeirsson G., Kjeld M. Endothelin secretion is regulated by cyclic AMP and phosphatase 2A in endothelial cells. J. Cell Physiol. 1994. V. 161(3). P. 429–434. DOI: 10.1002/jcp.1041610305
  13. Jankowich M., Choudhary G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc. Med. 2020. V. 30(1). P. 1–8. DOI: 10.1016/j.tcm.2019.01.007
  14. Wei A., Gu Z., Li J. et al. Clinical Adverse Effects of Endothelin Receptor Antagonists: Insights From the Meta-Analysis of 4894 Patients From 24 Randomized Double-Blind Placebo-Controlled Clinical Trials. J. Am. Heart Assoc. 2016. V. 5(11). Article e003896. DOI: 10.1161/JAHA.116.003896
  15. Packer M., McMurray J.J.V., Krum H. et al. ENABLE Investigators and Committees. Long-Term Effect of Endothelin Receptor Antagonism With Bosentan on the Morbidity and Mortality of Patients With Severe Chronic Heart Failure: Primary Results of the ENABLE Trials. JACC Heart Fail. 2017. V. 5(5). P. 317–326. DOI: 10.1016/j.jchf.2017.02.021
  16. Bhandari S.S., Davies J.E., Struck J., Ng L.L. Plasma C-terminal proEndothelin-1 (CTproET-1) is affected by age, renal function, left atrial size and diastolic blood pressure in healthy subjects. Peptides. 2014. V. 52. P. 53–57. DOI: 10.1016/j.peptides.2013.12.001
  17. Jankowich M.D., Wu W.C., Choudhary G. Association of Elevated Plasma Endothelin-1 Levels With Pulmonary Hypertension, Mortality, and Heart Failure in African American Individuals: The Jackson Heart Study. JAMA Cardiol. 2016. V. 1(4). P. 461–469. DOI: 10.1001/jamacardio.2016.0962
  18. Carreño J.E., Apablaza F., Ocaranza M.P., Jalil J.E. Hipertrofia cardiaca: eventos moleculares y celulares [Cardiac hypertrophy: molecular and cellular events]. Rev. Esp. Cardiol. 2006. V. 59(5). P. 473–486.
  19. Dupuis L.E., Berger M.G., Feldman S. et al. Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly.
    J. Mol. Cell Cardiol. 2015. V. 84. P. 70–80. DOI: 10.1016/j.yjmcc.2015.04.007
  20. Ade C.J., Bemben D.A. Differential MicroRNA expression following head-down tilt bed rest: implications for cardiovascular responses to microgravity. Physiol. Rep. 2019. V. 7(9). P. e14061. DOI: 10.14814/phy2.14061
  21. Kruchinina T.K., Vasichkina E.S., Egorov D.F., Tatarskij B.A. Provodyashchaya sistema serdca u detej: strukturnye osobennosti i rol' v formirovanii narushenij ritma serdca. Rossijskij vestnik perinatologii. 2011. № 6. S. 30–36. (in Russian).
  22. Ercan E. Effects of aerospace environments on the cardiovascular system. Anatol. J. Cardiol. 2021. V. 25(Suppl 1). P. 3–6. DOI: 10.5152/AnatolJCardiol.2021.S103
  23. Krittanawong C., Isath A., Kaplin S. et al. Cardiovascular disease in space: A systematic review. Prog. Cardiovasc. Dis. 2023. V. 81. P. 33–41. DOI: 10.1016/j.pcad.2023.07.009
  24. Maier J.A., Cialdai F., Monici M., Morbidelli L. The impact of microgravity and hypergravity on endothelial cells. Biomed. Res. Int. 2015. V. 2015. Article 434803. DOI: 10.1155/2015/434803
  25. Mitchell A., Pimenta D., Gill J. et al. Ahmad H, Bogle R. Cardiovascular effects of space radiation: implications for future human deep space exploration. Eur. J. Prev. Cardiol. 2019. V. 26(16). P. 1707–1714. DOI: 10.1177/2047487319831497
  26. Infanger M., Ulbrich C., Baatout S. et all. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J. Cell Biochem. 2007. V. 101(6). P. 1439–1455. DOI: 10.1002/jcb.21261
  27. Baselet B., Rombouts C., Benotmane AM. et all. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int. J. Mol. Med. 2016. V. 38(6). P. 1623–1641. DOI: 10.3892/ijmm.2016.2777
  28. Hendry J.H., Akahoshi M., Wang L.S. et al. Radiation-induced cardiovascular injury. Radiat. Environ. Biophys. 2008. V. 47(2). P. 189–193. DOI: 10.1007/s00411-007-0155-7
  29. Yan X., Sasi S.P., Gee H. et al. Cardiovascular risks associated with low dose ionizing particle radiation. PLoS One. 2014. V. 9(10). Article e110269. DOI: 10.1371/journal.pone.0110269
  30. Wuu Y.R., Hu B., Okunola H. et al. LET-Dependent Low Dose and Synergistic Inhibition of Human Angiogenesis by Charged Particles: Validation of miRNAs that Drive Inhibition. iScience. 2020. V. 23(12). Article 101771. DOI: 10.1016/j.isci.2020.101771
  31. Vernice N.A., Meydan C., Afshinnekoo E., Mason C.E. Long-term spaceflight and the cardiovascular system. Precis. Clin. Med. 2020. V. 3(4). P. 284–291. DOI: 10.1093/pcmedi/pbaa022
  32. Garikipati V.N.S., Arakelyan A., Blakely E.A. et al. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells. 2021. V. 10(2). P. 387. DOI: 10.3390/cells10020387
  33. Yarilin A.A. Apoptoz: priroda fenomena i ego rol' v norme i pri patologii. Aktual'nye problemy patofiziologii. Pod red. B.B. Moroza. M.: Medicina. 2001. S. 13–56. (in Russian).
  34. Kim C.J., Choe Y.J., Yoon B.H. et al. Patterns of bcl-2 expression in placenta. Pathol. Res. Pract. 1995. V. 191(12). P. 1239–1244. DOI: 10.1016/S0344-0338(11)81132-5
  35. Cotrupi S., Ranzani D., Maier J.A. Impact of modeled microgravity on microvascular endothelial cells. Biochim. Biophys. Acta. 2005. V. 1746(2). P. 163–168. DOI: 10.1016/j.bbamcr.2005.10.002
  36. Pavela J., Sargsyan A., Bedi D. et al. Surveillance for jugular venous thrombosis in astronauts. Vasc Med. 2022. V. 27(4). P. 365–372. DOI: 10.1177/1358863X221086619
  37. Wang Y., Li C., Wang R. et al. PIEZO1 Promotes the Migration of Endothelial Cells via Enhancing CXCR4 Expression under Simulated Microgravity. Int. J. Mol. Sci. 2024. V. 25(13). P. 7254. DOI: 10.3390/ijms25137254
  38. Duffy A.M., Bouchier-Hayes D.J., Harmey J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6482
  39. Zhang Y., Lu T., Wong M. et al. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. FASEB J. 2016. V. 30(6). P. 2211–2224. DOI: 10.1096/fj.201500121
  40. Siamwala J.H., Macias B.R., Healey R. et al. Spaceflight-Associated Vascular Remodeling and Gene Expression in Mouse Calvaria. Front. Physiol. 2022. V. 13. Article 893025. DOI: 10.3389/fphys.2022.893025
  41. Herault S., Fomina G., Alferova I. et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur. J. Appl. Physiol. 2000. V. 81(5). P. 384–390. DOI: 10.1007/s004210050058
  42. Herault S., Fomina G., Alferova I. et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur. J. Appl. Physiol. 2000. V. 81(5). P. 384–390. DOI: 10.1007/s004210050058
  43. Baevsky R.M., Baranov V.M., Funtova I.I. et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. (1985). 2007. V. 103(1). P. 156–161. DOI: 10.1152/japplphysiol.00137.2007
  44. Cooke W.H., Ames J.E. IV., Crossman A.A. et al. Nine months in space: effects on human autonomic cardiovascular regulation. J. Appl. Physiol. (1985). 2000. V. 89(3). P. 1039–1045. DOI: 10.1152/jappl.2000.89.3.1039
  45. Norsk P., Asmar A., Damgaard M., Christensen N.J. Fluid shifts, vasodilation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 2015. V. 593. P. 573–584.
  46. Alfrey C.P., Udden M.M., Leach-Huntoon C. et al. Control of red blood cell mass in spaceflight. J. Appl. Physiol. 1996. V. 81. P. 98–104.
  47. Goncharov I.N., Pastushkova L.H., Koloteva M.I. i dr. Proteomnye issledovaniya sostoyaniya organizma pri vtorichnoj ge-morragicheskoj purpure posle dlitel'nyh kosmicheskih poletov. Biomedicinskaya radioelektronika. 2022. T. 25. № 2–3. S. 5–14. (in Russian).
  48. Waters W.W., Ziegler M.G., Meck J.V. Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J. Appl. Physiol. 2002. V. 92. P. 586–594.
  49. Smith N., Lopez R.A., Silberman M. Distributive Shock. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2024.
  50. Yuan M., Alameddine A., Coupé M. et al. Effect of Chinese herbal medicine on vascular functions during 60-day head-down bed rest. Eur. J. Appl. Physiol. 2015. V. 115(9). P. 1975–1983. DOI: 10.1007/s00421-015-3176-y
  51. Demiot C., Dignat-George F., Fortrat J.O. et al WISE 2005: chronic bed rest impairs microcirculatory endothelium in women. Am. J. Physiol. Heart Circ. Physiol. 2007. V. 293(5). P. H3159–3164. DOI: 10.1152/ajpheart.00591.2007
  52. Navasiolava N.M., Dignat-George F., Sabatier F. et al. Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers. Am. J. Physiol. Heart Circ. Physiol. 2010. V. 299(2). P. H248–256. DOI: 10.1152/ajpheart.00152.2010
  53. Yuan M., Custaud M.A., Xu Z. Multi-System Adaptation to Confinement During the 180-Day Controlled Ecological Life Support System (CELSS) Experiment. Front. Physiol. 2019. V. 10. P. 575. DOI: 10.3389/fphys.2019.00575
  54. Navasiolava N., Yuan M., Murphy R. et al. Vascular and Microvascular Dysfunction Induced by Microgravity and Its Analogs in Humans: Mechanisms and Countermeasures. Front. Physiol. 2020. V. 11. Article 952. DOI: 10.3389/fphys.2020.00952
Date of receipt: 07.04.2025
Approved after review: 12.04.2025
Accepted for publication: 19.08.2025