350 rub
Journal Technologies of Living Systems №2 for 2025 г.
Article in number:
Optimization of allele-specific PCR technology for detection of single nucleotide genomic variants
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202502-04
UDC: 577.29
Authors:

M.N. Karagyaur1, K.D. Bozov2, A.L. Primak3, S.S. Dzhauari4, M.E. Illarionova5, P.S. Klimovich6, E.V. Semina7, L.M. Samokhodskaya8, V.S. Popov9, D.A. Sheleg10, E.A. Neyfeld11

1–11 FSBEI HE “Lomonosov Moscow State University” (Moscow, Russia)

1 m.karagyaur@mail.ru, 2 kir-bozov@yandex.ru, 3 primak.msu@mail.ru, 4 stalik.djauari@yandex.ru, 5 mar729i63illar90@yandex.ru, 6 lex2050@mail.ru, 7 e-tal@yandex.ru, 8 samokhodskay@gmail.com, 9 galiantus@gmail.com, 10 sheleg-da@mail.ru, 11 ea.neyfeld@mail.ru

Abstract:

Identification of genomic variants and elucidation of their functional significance is one of the tasks of human genetics. Allele-specific PCR technology, especially ARMS modification, is best suited for solving this task in large-scale routine studies. The problem is the lack of understandable and accessible algorithms for the design of 3'-end primers that determine the specificity and efficiency of ARMS analysis.

Purpose of work – to develop an algorithm for the design of 3‘-ends of ARMS primers for the detection of single nucleotide genomic variants; develop a software package to automate the design of 3’-end ARMS primers.

An algorithm for the design of 3'-ends of internal ARMS primers was developed, and in turn it was used to create the ARMS PrimerDesign software. The developed software allows optimizing the design of ARMS primers regardless of the nature of the nucleotide substitution, as well as the orientation of primers relative to the target genomic variant. Using the ARMS PrimerDesign software we designed primers for detection of genomic variants #rs4760 (PLAUR gene), #rs17445840 (CDH2 gene), #rs28561984 (DCHS2 gene), #rs10999947 (CDH23 gene), previously identified in DNA samples of patients with mental disorders. The specificity of ARMS-analysis with primers obtained was assessed by comparing the ARMS results with the results of Sanger sequencing. We found that nucleotide «-2» substitution in internal primers increases the efficiency of ARMS-analysis compared to nucleotide «-1» substitution, but decreases its specificity in some cases: some homozygous variants may be misinterpreted as heterozygous. It has been found experimentally that the optimal annealing temperature for ARMS PCR can be 5-7⁰C higher than theoretically predicted.

The results obtained confirm the high specificity and efficiency of using ARMS, a kind of allele-specific PCR, for routine detection of desired genomic variants in large sample collections. The optimal specificity and efficiency of ARMS can be achieved by making nucleotide substitutions in the «-1» position at the 3'-end of internal allele-specific primers, which can be attained with the help of the ARMS PrimerDesign software developed by us, followed by experimental determination of the optimal annealing temperature for the tetraplex of designed primers.

Pages: 37-48
For citation

Karagyaur M.N., Bozov K.D., Primak A.L., Dzhauari S.S., Illarionova M.E., Klimovich P.S., Semina E.V., Samokhodskaya L.M., Popov V.S., Sheleg D.A., Neyfeld E.A. Optimization of allele-specific PCR technology for detection of single nucleotide genomic variants. Technologies of Living Systems. 2025. V. 22. № 2. Р. 37-48. DOI: https://doi.org/10.18127/j20700997-202502-04 (In Russian).

References
  1. Auton A., Brooks L.D., Durbin R.M. et al. A global reference for human genetic variation. Nature. 2015. V. 526. № 7571. P. 68–74. DOI: 10.1038/nature15393
  2. Zeman M.K., Cimprich K.A. Causes and consequences of replication stress. Nat Cell Biol. 2014. V. 16. № 1. С. 2-9. DOI: 10.1038/ncb2897
  3. Telenti A., Pierce L.C., Biggs W.H. et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci USA. 2016. V. 113. № 42. P. 11901-11906. DOI: 10.1073/pnas.1613365113
  4. Zhang C., Gao Y., Ning Z. et al. PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biol. 2019. V. 20. № 1. P. 215. DOI: 10.1186/s13059-019-1838-5
  5. Wang Y., Li H., Hou L. et al. Genome-wide association study on coordination and agility in 461 Chinese Han males. Heliyon. 2023. V. 9. № 8. P. e19268. DOI: 10.1016/j.heliyon.2023.e19268
  6. Weedon M.N., Jackson L., Harrison J. et al. Use of SNP chips to detect rare pathogenic variants: retrospective, population based diagnostic evaluation. BMJ. 2021. V. 372. P. n214. DOI: 10.1136/bmj.n214
  7. Horvat S., Bünger L. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay for the mouse leptin receptor (Lepr(db)) mutation. Lab Anim. 1999. V. 33. № 4. P. 380-384. DOI: 10.1258/002367799780487850
  8. Old J.M., Varawalla N.Y., Weatherall D.J. Rapid detection and prenatal diagnosis of beta-thalassaemia: studies in Indian and Cypriot populations in the UK. Lancet. 1990. V. 336. № 8719. P. 834-837. DOI: 10.1016/0140-6736(90)92338-i
  9. Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet. 2001. Ch. 9. Iss. 9.8. DOI: 10.1002/0471142905.hg0908s07
  10. Chen J., Xu X., Dalhaimer P., Zhao L. Tetra-Primer Amplification-Refractory Mutation System (ARMS)-PCR for Genotyping Mouse Leptin Gene Mutation. Animals (Basel). 2022. V. 12. № 19. P. 2680. DOI: 10.3390/ani12192680
  11. Gaudelli N.M., Komor A.C., Rees H.A. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017. V. 551. № 7681. P. 464-471. DOI: 10.1038/nature24644
  12. Karagyaur M., Primak A., Bozov K. et al. Novel missense variants in brain morphogenic genes associated with depression and schizophrenia. Front Psychiatry. 2024. V. 15. P. 1338168. DOI: 10.3389/fpsyt.2024.1338168
  13. Rysenkova K.D., Semina E.V., Karagyaur M.N. i dr. Ispol'zovanie tekhnologii redaktirovaniya genoma CRISPR/Cas9 dlya podavleniya ekspressii gena urokinaznogo receptora v kletkah nejroblastomy. Tekhnologii zhivyh sistem. 2018. T. 15. № 1. S. 10-19. (in Russian).
  14. Muneeswarana K., de Silvac V.A., Dayabandarad M. et al. SNPgen: A portal of innovative automated tools for genotyping assay design. Software impacts. 2024. V. 21. P. 100684. DOI: 10.1016/j.simpa.2024.100684
Date of receipt: 19.11.2024
Approved after review: 20.11.2024
Accepted for publication: 22.04.2025