M.N. Karagyaur1, A.L. Primak2, A.E. Tolstoluzhinskaya3, A.V. Reshetnev4, N.A. Basalova5, S.S. Dzhauari6, K.D. Bozov7, A.N. Velikanov8, A.Yu. Efimenko9, E.V. Semina10, L.M. Samokhodskaya11, P.S. Klimovich12, V.S. Popov13, D.A. Sheleg14, E.A. Neyfeld15
1–15 Medical Research and Education Institute Lomonosov Moscow State University (Moscow, Russia)
1 m.karagyaur@mail.ru, 2 primak.msu@mail.ru, 3 a.luzh@yandex.ru, 4 sasharesh@gmail.com, 5 natalia_ba@mail.ru, 6 stalik.djauari@yandex.ru, 7 kir-bozov@yandex.ru, 8 av-bioem@mail.ru, 9 efimenkoan@gmail.com, 10 e-tal@yandex.ru, 11 samokhodskay@gmail.com, 12 lex2050@mail.ru, 13 galiantus@gmail.com, 14 sheleg-da@mail.ru, 15 ea.neyfeld@mail.ru
The great diversity of technologies of cell culture genetic modification necessitates a clear understanding of their potential and limitations. Identification of the most efficient and accurate of them will save time to researchers in obtaining the desired cellular models.
Purpose of work – to conduct a comparative analysis of the potential of prime-editing, base editing and trans-splicing technologies for modeling of sought variants of human genes: ACTA2, ADRB2, ADRB3 and mouse Plaur gene.
We tested the efficiency of trans-splicing technology in two cellular models: 1. lifetime labelling of inducible ACTA2 protein expression in primary human dermal fibroblasts differentiating into myofibroblasts (in vitro model of fibrosis); 2. modeling a Plaur gene variant lacking the ability to interact with vitronectin in Neuro2a neuroblastoma cell culture. No sought hybrid trans-spliced mRNAs were detected in lysates of myofibroblasts; however, the fact of non-target trans-splicing was revealed. Optimization of donor trans-RNAs didn’t increase the specificity and efficiency of trans-splicing. This technique is very sensitive to the design of the donor trans-RNAs, the optimization of which is time and resource consuming on a case-by-case basis. The efficiency of prime-editing technology was assessed using two different cellular models: conversion of fluorescence spectrum of HEK293T cells transfected with fluoPEER-GFP-BFP genetic construct and modeling of Q33Stop variant in Plaur gene in Neuro2a cell culture. Prime-editing provided relatively low efficiency of the desired modification with a much higher probability of generating non-target products. In contrast, base editing technology allows modifying at least 50% of the total number of alleles in the cell population, with minimal off-target activity, which has been confirmed by the results of Sanger sequencing and flow cytometry of the modified murine neuroblastoma cells and immortalized human mesenchymal stromal cells.
The data obtained do not allow us to consider trans-splicing and prime-editing technologies as effective and specific approaches to modeling the desired genomic variants. According to our data, the most efficient, convenient and adapted for the creation of genetically modified cellular models is the base editing technology, which allows us to achieve an acceptable level of editing even in a non-cloned cell population.
- Vashishat A., Patel P., Das Gupta G., Das Kurmi B. Alternatives of Animal Models for Biomedical Research: a Comprehensive Review of Modern Approaches. Stem Cell Rev Rep. 2024. V. 20. №. 4. P. 881-899. DOI: 10.1007/s12015-024-10701-x
- Duval K., Grover H., Han L.H. et al. Modeling Physiological Events in 2D vs 3D Cell Culture. Physiology (Bethesda). 2017. V. 32. № 4. P. 266-277. DOI: 10.1152/physiol.00036.2016
- Li M., Izpisua Belmonte J.C. Organoids - Preclinical Models of Human Disease. N. Engl. J. Med. 2019. V. 380 №. 6. P. 569-579. DOI: 10.1056/NEJMra1806175
- Weinstein-Marom H., Blokon-Kogan D., Levi-Mann M. et al. Genetic Modification of Tumor-Infiltrating Lymphocytes, Peripheral T Cells, and T-Cell Model Cell Lines. Methods Mol. Biol. 2024. V. 2748. P. 167-186. DOI: 10.1007/978-1-0716-3593-3_13
- Karagyaur M., Primak A., Efimenko A. et al. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells. V. 11. № 20. P. 3235. DOI: 10.3390/cells11203235
- Fontes A., Lakshmipathy U. Advances in genetic modification of pluripotent stem cells. Biotechnol. Adv. 2013. V. 31. № 7. P. 994-1001. DOI: 10.1016/j.biotechadv.2013.07.003
- Gaudelli N.M., Komor A.C., Rees H.A. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017. V. 551. № 7681. P. 464-471. DOI: 10.1038/nature24644
- Anzalone A.V., Randolph P.B., Davis J.R. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019. V. 576. № 7785. P. 149-157. DOI: 10.1038/s41586-019-1711-4
- Lasda E.L., Blumenthal T. Trans-splicing. Wiley Interdiscip Rev RNA. 2011. V. 2. № 3. P. 417-434. DOI: 10.1002/wrna.71
- Chu V.T., Weber T., Wefers B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015. V. 33. № 5. P. 543-548. DOI: 10.1038/nbt.3198
- Cheng H., Zhang F., Ding Y. CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications. Pharmaceutics. 2021. V. 13. № 10. P. 1649. DOI: 10.3390/pharmaceutics13101649
- Murphy W.J., Watkins K.P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986. V. 47. № 4. P. 517-525. DOI: 10.1016/0092-8674(86)90616-1
- Zaphiropoulos P.G. Trans-splicing in Higher Eukaryotes: Implications for Cancer Development? Front. Genet. 2011. V. 2. P. 92. DOI: 10.3389/fgene.2011.00092
- Doi A., Delaney C., Tanner D. et al. RNA exon editing: Splicing the way to treat human diseases. Mol. Ther. Nucleic. Acids. 2024. V. 35. № 3. P. 102311. DOI: 10.1016/j.omtn.2024.102311
- Palazzo A.F., Lee E.S. Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and lncRNAs. Front. Genet. 2018. V. 9. P. 440. DOI: 10.3389/fgene.2018.00440
- Madsen C.D., Sidenius N. The interaction between urokinase receptor and vitronectin in cell adhesion and signalling. Eur. J. Cell Biol. 2008. V. 87. № 8-9. P. 617-629. DOI: 10.1016/j.ejcb.2008.02.003
- Huang T.P., Zhao K.T., Miller S.M. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 2019. V. 37. № 6. P. 626-631. DOI: 10.1038/s41587-019-0134-y
- Grünewald J., Zhou R., Iyer S. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 2019. V. 37. № 9. P. 1041-1048. DOI: 10.1038/s41587-019-0236-6
- Primak A., Kalinina N., Skryabina M. et al. Novel Immortalized Human Multipotent Mesenchymal Stromal Cell Line for Studying Hormonal Signaling. Int. J. Mol. Sci. 2024. V. 25. № 4. P. 2421. DOI: 10.3390/ijms25042421
- Longo P.A., Kavran J.M., Kim M.S., Leahy D.J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013. V. 529. P. 227-240. DOI: 10.1016/B978-0-12-418687-3.00018-5
- Tyurin-Kuzmin P.A., Karagyaur M.N., Kulebyakin K.Y. et al. Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. Int. J. Mol. Sci. 2020. V. 21. № 12. P. 4442. DOI: 10.3390/ijms21124442
- Basalova N., Arbatskiy M., Popov V. et al. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp. Mol. Med. 2023. V. 55. P. 1399–1412. DOI: 10.1038/s12276-023-01017-w
- Dyikanov D.T., Vasiluev P.A., Rysenkova K.D. et al. Optimization of CRISPR/Cas9 Technology to Knock Out Genes of Interest in Aneuploid Cell Lines. Tissue Eng. Part C Methods. 2019. V. 25. № 3. P. 168-175. DOI: 10.1089/ten.TEC.2018.0365
- Karagyaur M.N., Dyjkanov D.T., Rostovceva A.I., Kochegura T.N. Detekciya sobytij modifikacii genoma. Redaktirovanie genov i genomov, 2-e izd. Novosibirsk: Akademgorodok SO RAN. 2018. T. 3. S. 87-116. (in Russian).
- Schene I.F., Joore I.P., Baijens J.H.L. et al. Mutation-specific reporter for optimization and enrichment of prime editing. Nat. Commun. 2022. V. 13. № 1. P. 1028. DOI: 10.1038/s41467-022-28656-3
- Berger A., Maire S., Gaillard M.C. et al. mRNA trans-splicing in gene therapy for genetic diseases. Wiley Interdiscip Rev RNA. 2016. V. 7. № 4. P. 487-498. DOI: 10.1002/wrna.1347
- Basalova N., Arbatskiy M., Popov V. et al. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp. Mol. Med. 2023. V. 55. № 7. P. 1399-1412. DOI: 10.1038/s12276-023-01017-w
- Barthélémy F., Wein N. Personalized gene and cell therapy for Duchenne Muscular Dystrophy. Neuromuscul. Disord. 2018. V. 28. № 10. P. 803-824. DOI: 10.1016/j.nmd.2018.06.009
- Rysenkova K.D., Semina E.V., Karagyaur M.N. i dr. Ispol'zovanie tekhnologii redaktirovaniya genoma CRISPR/Cas9 dlya podavleniya ekspressii gena urokinaznogo receptora v kletkah nejroblastomy. Tekhnologii zhivyh sistem. 2018. T. 15. № 1. S. 10-19. (in Russian).
- Semina E., Rubina K., Sysoeva V. et al. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. Eur. J .Cell Biol. 2016. V. 95. № 9. P. 295-310. DOI: 10.1016/j.ejcb.2016.05.003
- Shmakova A., Balatskiy A., Kulebyakina M. et al. Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis. Russian Journal of Developmental Biology. 2021. V. 52. № 1. P. 53-63. DOI: 10.1134/S1062360421010069
- Yoon DE., Kim NR., Park S.J. et al. Precise base editing without unintended indels in human cells and mouse primary myoblasts. Exp. Mol. Med. 2023. V. 55. № 12. P. 2586-2595. DOI: 10.1038/s12276-023-01128-4

