350 rub
Journal Technologies of Living Systems №4 for 2024 г.
Article in number:
The impact of intraocular lenses on optical coherence tomography results (literature review)
Type of article: overview article
DOI: 10.18127/j20700997-202404-08
UDC: 617.7
Authors:

A.A. Panov1, N.S. Semenova2, V.S. Akopyan3, A.V. Larichev4

1–4 Lomonosov Moscow State University (Moscow, Russia)

1 andrew_pan98@mail.ru, 2 semenovans@gmail.com, 3 akopyan_vs@yahoo.com, 4 79652667227@yandex.ru

Abstract:

The development of technologies for modeling and manufacturing complex optical systems has contributed to the emergence of various intraocular lenses (IOLs) in the ophthalmology market, which are used in cataract surgery and address the issues of astigmatism and loss of accommodation after lens removal. It has previously been shown that the implantation of multifocal IOLs and extended depth of focus (EDOF) IOLs may cause optical distortions in retinal visualization during surgery. Due to their complex focal structure, such IOLs can potentially lead to aberrations during optical coherence tomography (OCT) of the posterior segment of the eye. Given the increasingly sophisticated post-processing algorithms for primary scans, even minimal optical aberrations may significantly distort the final result presented to the physician for interpretation. In this regard, the analysis of the literature on the effects of monofocal, multifocal IOLs, and EDOF IOLs on the qualitative and quantitative parameters of OCT appears relevant.

Most studies did not find any artifacts on OCT scans that could be associated with the installation of IOLs. For multifocal diffractive IOLs, the use of certain models of ophthalmic devices with linear scanning sometimes reports the dropout of individual scans, but this does not have a significant impact on the results of quantitative assessments. At the same time, the implantation of monofocal IOLs is associated with an increase in OCT signal strength, retinal thickness in the macular area, and the peripapillary retinal nerve fiber layer up to 6 months after surgery. According to the literature, the quantitative changes observed in OCT after the implantation of multifocal or EDOF IOLs are unlikely to exceed those seen with monofocal lenses; however, further research is required.

The observed increase in retinal layer thickness detected by OCT after surgery may be due to both direct improvement in signal quality after the removal of the cloudy lens and the development of transient retinal tissue alteration due to inflammation. Several retinal and optic nerve diseases require reproducible monitoring through regular repeated OCT scans and comparison of quantitative evaluation results. Given the emergence of new technological solutions and the high likelihood of artifacts described in this review, it is recommended that patients undergo new baseline OCT scanning after cataract surgery to update baseline measurements for future assessments of retinal thickness, retinal layers, optic nerve disc morphometry, and other quantitative parameters. Further studies of optical aberrations caused by multifocal and EDOF IOLs will help in refining OCT image processing algorithms.

Pages: 72-79
For citation

Panov A.A., Semenova N.S., Akopyan V.S., Larichev A.V. The impact of intraocular lenses on optical coherence tomography results literature review). Technologies of Living Systems. 2024. V. 21. № 4. Р. 72-79. DOI: https://doi.org/10.18127/j20700997-202404-08 (In Russian).

References
  1. Aumann S., Donner S., Fischer J., Müller F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille J (ed.), High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham, Springer, 2019. P. 59-85.
  2. Davis G. The Evolution of Cataract Surgery. Mo Med. 2016. V. 113. № 1. P. 58–62.
  3. Li J., Sun B., Zhang Y., Hao Y., Wang Z., Liu C., Jiang S. Comparative efficacy and safety of all kinds of intraocular lenses in presbyopia-correcting cataract surgery: a systematic review and meta-analysis. BMC Ophthalmol. 2024. V. 24. № 1. P. 172.
  4. Watanabe T., Watanabe A., Nakano T. Suitability of Different Observational Lenses for Viewing the Macular Area Through Multifocal Intraocular Lenses in a Model of the Human Eye. Clin. Ophthalmol. 2020. V. 14. P. 3279-3284.
  5. Terwee T., Weeber H., van der Mooren M., Piers P. Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses. J. Refract. Surg. 2008. V. 24. № 3. P. 223-232.
  6. Semenova N.S., Larichev A.V., Akopyan V.S. Swept source — opticheskaya kogerentnaya tomografiya: obzor tekhnologii. Vestnik oftalmologii. 2020. T. 136. № 1. S. 111–116. (in Russian).
  7. Rampat R., Gatinel D. Multifocal and Extended Depth-of-Focus Intraocular Lenses in 2020. Ophthalmology. 2021. V. 128. № 11. P. 164–185.
  8. Calladine D., Evans J., Shah S., Leyland M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database of Systematic Reviews. 2012. № 9. P. 76.
  9. Pedrotti E., Bruni E., Bonacci E., Badalamenti R., Mastropasqua R., Marchini G. Comparative Analysis of the Clinical Outcomes With a Monofocal and an Extended Range of Vision Intraocular Lens. Journal of Refractive Surgery. 2016. V. 32. № 7. P. 436–442.
  10. Anisimova N.S., Anisimov S.I., Danilchenko M.I. Pseudo-accommodative intraocular lenses. Vestnik Oftalmologii. 2022. V. 138. № 5. P. 111–117.
  11. Schwiegerling J. Refractive and diffractive principles in presbyopia-correcting IOLs - An Optical Lesson [Electronic resource]: Alcon Science Medical Affairs. 2023. URL: https://us.alconscience.com/ (data obrashcheniya 08.09.2024).
  12. Rementeria-Capelo L.A., Garcia-Perez J.L., Contreras I., Blazquez V, Ruiz-Alcocer J. Impact of Trifocal and Trifocal Toric Intraocular Lenses on Spectral-domain OCT Retinal Measurements. Journal of Glaucoma. 2021. V. 30. № 4. P. 300–303.
  13. Sezenoz A.S., Gungor S.G., Dogan İ.K., Colak M.Y., Gokgoz G., Altınors D.D. The effect of trifocal and extended-depth-of-focus intraocular lenses on optical coherence tomography parameters. Indian Journal of Ophthalmology. 2024. V. 72. № 3. P. 423–428.
  14. Garcia-Bella J., Martinez de la Casa J., Talavero Gonzalez P., Fernandez-Vigo J., Valcarce Rial L., Garcia-Feijoo J. Variations in retinal nerve fiber layer measurements on optical coherence tomography after implantation of trifocal intraocular lens. European Journal of Ophthalmology. 2018. V. 28. № 1. P. 32–35.
  15. Garcia-Bella J., Talavero-Gonzalez P., Carballo-Alvarez J., Sanz-Fernandez J., Vazquez-Molini J., Garcia-Feijoo J., Martinez-de-la-Casa J. Changes in retinal nerve fiber layer thickness measurements in response to a trifocal intraocular lens implantation. Eye (Lond). 2018. V. 32. № 10. P. 1574–1578.
  16. Comba O., Pehlivanoglu S., Albayrak S., Karakaya M., Bayraktar Z., Bayraktar S. Optical coherence tomography-signal strength index following trifocal and monofocal intraocular lens implantation. Photodiagnosis and Photodynamic Therapy. 2021. V. 36. P. 102606.
  17. Inoue M., Bissen-Miyajima H., Yoshino M., Suzuki T. Wavy horizontal artifacts on optical coherence tomography line-scanning images caused by diffractive multifocal intraocular lenses. Journal of Cataract and Refractive Surgery. 2009. V. 35. № 7. P. 1239–1243.
  18. Dias-Santos A., Costa L., Lemos V., Anjos R., Vicente A., Ferreira J., Cunha J. The impact of multifocal intraocular lens in retinal imaging with optical coherence tomography. International Ophthalmology. 2015. V. 35. № 1. P. 43–47.
  19. Skiadaresi E., McAlinden C., Ravalico G., Moore J. Optical coherence tomography measurements with the LENTIS Mplus multifocal intraocular lens. Graefe's Archive for Clinical and Experimental Ophthalmology. 2012. V. 250. № 9. P. 1395–1398.
  20. Kanclerz P., Toto F., Grzybowski A., Alio J. Extended Depth-of-Field Intraocular Lenses: An Update. Asia-Pacific Journal of Ophthalmology (Phila). 2020. V. 9. № 3. P. 194–202.
  21. Schwiegerling J., Gu X., Hong X. et al. Optical Principles of Extended Depth of Focus IOLs [Electronic resource]: Alcon Science Medical Affairs, 2023. URL: https://us.alconscience.com/ (data obrashcheniya 08.09.2024).
  22. Kim J., Kim N., Lee E., Rho S., Kang S., Kim C. Influence of blue light-filtering intraocular lenses on retinal nerve fiber layer measurements by spectral-domain optical coherence tomography. Current Eye Research. 2011. V. 36. № 10. P. 937–942.
  23. Nakatani Y., Higashide T., Ohkubo S., Takeda H., Sugiyama K. Effect of cataract and its removal on ganglion cell complex thickness and peripapillary retinal nerve fiber layer thickness measurements by fourier-domain optical coherence tomography. Journal of Glaucoma. 2013. V. 22. № 6. P. 447–455.
  24. Bambo M., Garcia-Martin E., Otin S., Sancho E., Fuertes I., Herrero R., Satue M., Pablo L. Influence of cataract surgery on repeatability and measurements of spectral domain optical coherence tomography. British Journal of Ophthalmology. 2014. V. 98. № 1. P. 52–58.
  25. Celik E., Cakır B., Turkoglu E., Dogan E., Alagoz G. Effect of cataract surgery on subfoveal choroidal and ganglion cell complex thicknesses measured by enhanced depth imaging optical coherence tomography. Clinical Ophthalmology. 2016. V. 10. P. 2171–2177.
  26. Pasova P., Skorkovska K. The Effect of Cataract Surgery on the Reproducibility and Outcome of Optical Coherence Tomography Measurements of Macular and Retinal nerve Fibre Layer Thickness. Ceska a Slovenska Oftalmologie [Czech and Slovak Ophthalmology (Czech)]. 2016. V. 72. № 2. P. 20–26.
  27. Jha B., Sharma R., Vanathi M., Agarwal T., Sidhu T., Tomar A., Dada T. Effect of phacoemulsification on measurement of retinal nerve fiber layer and optic nerve head parameters using spectral-domain-optical coherence tomography. Oman Journal of Ophthalmology. 2017. V. 10. № 2. P. 91–95.
  28. Erdyakov A.K., Tikhonovich M.V., Klochikhina E.M., Budarina O., Gavrilova S.A. Vliyaniye protivovospalitelnoy terapii na pokazatel migratsii yader/kletok setchatki v modelyakh proliferativnoy vitreoretinopatii i totalnoy ishemii setchatki u krys. Tekhnologii zhivykh sistem. 2018. T. 15. № 2. S. 44–50. (in Russian).
  29. Miyake K., Ibaraki N. Prostaglandins and cystoid macular edema. Survey of Ophthalmology. 2002. V. 47. № 1. P. 203–218.
  30. Falcao M., Gonçalves N., Freitas-Costa P., Beato, J., Rocha-Sousa A., Carneiro A., Brandao, E., Falcao-Reis F. Choroidal and macular thickness changes induced by cataract surgery. Clinical ophthalmology. 2014. V. 8. P. 55–60.
  31. Grewing R., Becker H. Retinal thickness immediately after cataract surgery measured by optical coherence tomography. Ophthalmic Surgery Lasers. 2000. V. 31. № 3. P. 215–217.
  32. Von Jagow B., Ohrloff C., Kohnen T. Macular thickness after uneventful cataract surgery determined by optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology. 2007. V. 245. № 12. P. 1765–1767.
  33. Kok P., Van den Berg T., Van Dijk H., Stehouwer M., Van der Meulen I., Mourits M., Verbraak F. The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmologica. 2013. V. 91. № 5. P. 418–424.
Date of receipt: 12.09.2024
Approved after review: 12.09.2024
Accepted for publication: 22.10.2024