350 rub
Journal Technologies of Living Systems №4 for 2024 г.
Article in number:
Oxidative activity of prostate secretion neutrophils in bacterial prostatitis
Type of article: scientific article
DOI: 10.18127/j20700997-202404-05
UDC: 616.65-002, 616.65-002-008.8
Authors:

E.V. Proskurnina1, Z.V. Moskvina2, M.M. Sozarukova3, M.V. Fedorova4, D.A. Okhobotov5, A.A. Kamalov6

1 Research Centre for Medical Genetics (Moscow, Russia)

2 City Polyclinic № 46 of the Moscow Department of Health (Moscow, Russia)

3 Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (Moscow, Russia)

4 Central Research Institute for Epidemiology (Moscow, Russia)

5,6 Lomonosov Moscow State University (Moscow, Russia)

1 proskurnina@gmail.com, 2 gricukzv@yandex.ru, 3 s_madinam@bk.ru, 4 theklazontag@yandex.ru, 5 14072003m@gmail.com, 6 armais.kamalov@rambler.ru

Abstract:

Here, we aimed to studying the diagnostic significance of the assessment of the oxidative activity of neutrophils in prostate secretion using a complex chemiluminometric protocol using two enhancers (luminol and lucigenin) and neutrophil stimuli (phorbol-12-myristate-13-acetate, PMA, and N-formylmethionyl-leucyl-phenylalanine, fMLP).

An observational, single-stage, uncontrolled, monocenter pilot study included 13 patients aged 29 to 70 years with a confirmed diagnosis of chronic prostatitis, including in combination with benign prostatic hyperplasia. The material for the study was the secretion of the prostate gland, obtained after a massage of the prostate. Neutrophil activity was determined according to a complex protocol including the use of two chemiluminescent probes (luminol or lucigenin) and two stimuli (PMA or fMLP). This protocol allows to evaluate different pathways and links of neutrophil activation. Since neutrophils are the main sources of reactive oxygen species in bacterial prostatitis, the antioxidant capacity of the biomaterial was additionally assessed to assess the severity of oxidative stress.

The main results of the work are as follows: 1) the oxidative activity of neutrophils depends on the severity of inflammation, and increases in the series remission < latent course < exacerbation; 2) the magnitude of neutrophil activity depends not only on the severity of inflammation, but also on the nature of the infecting agent; 3) a strong direct correlation is typical for indicators of spontaneous luminol- and lucigenin-dependent chemiluminescence, PMA-stimulated luminol- and lucigenin-dependent chemiluminescence, PMA- and fMLP-stimulated luminol-dependent chemiluminescence, which makes it possible to use one of the most sensitive indicators, that is PMA-stimulated luminol-dependent chemiluminescence.

Thus, the activity of neutrophils in the secretion of the prostate gland is an informative diagnostic parameter. To assess the severity of inflammation, it is advisable to use the protocol of PMA-stimulated luminol-dependent chemiluminescence, since this parameter is characterized by a significantly higher analytical sensitivity than spontaneous chemiluminescence, and the indicators of fMLP-induced chemiluminescence and lucigenin-activated chemiluminescence correlate with it. When evaluating the result, one should take into account not only the severity of inflammation, but also the nature of the infecting agent.

Pages: 42-53
For citation

Proskurnina E.V., Moskvina Z.V., Sozarukova M.M., Fedorova M.V., Okhobotov D.A., Kamalov A.A. Oxidative activity of prostate secretion neutrophils in bacterial prostatitis. Technologies of Living Systems. 2024. V. 21. № 4. Р. 42–53. DOI: https://doi.org/10.18127/ j20700997-202404-05 (In Russian).

References
  1. Davis N.G., Silberman M. Bacterial Acute Prostatitis. StatPearls.Treasure Island (FL). 2022.
  2. Khan F.U., Ihsan A.U., Khan H.U., Jana R., Wazir J., Khongorzul P., Waqar M., Zhou X. Comprehensive overview of prostatitis. Biomed Pharmacother. 2017. V. 94. P. 1064-1076.
  3. Krieger J.N., Nyberg L. Jr., Nickel J.C. NIH consensus definition and classification of prostatitis. JAMA. 1999. V. 282. № 3. P. 236-237.
  4. Alshahrani S., McGill J., Agarwal A. Prostatitis and male infertility. J. Reprod Immunol. 2013. V. 100. № 1. P. 30-36.
  5. Xiong S., Liu X., Deng W., Zhou Z., Li Y., Tu Y., Chen L., Wang G., Fu B. Pharmacological Interventions for Bacterial Prostatitis. Front. Pharmacol. 2020. V. 11. P. 504.
  6. Pasqualotto F.F., Sharma R.K., Potts J.M., Nelson D.R., Thomas A.J., Agarwal A. Seminal oxidative stress in patients with chronic prostatitis. Urology. 2000. V. 55. № 6. P. 881-885.
  7. Ahmed A.A.M., Aissa A. Ait. Rol' okislitel'nogo stressa v muzhskom besplodii u zhitelej Jemena. Tekhnologii zhivyh sistem. 2020.
    T. 17. № 4. S. 86–89. DOI: 10.18127/j20700997-202004-10 (in Russian).
  8. Zhou J.F., Xiao W.Q., Zheng Y.C., Dong J., Zhang S. M. Increased oxidative stress and oxidative damage associated with chronic bacterial prostatitis. Asian J. Androl. 2006. V. 8. № 3. P. 317-323.
  9. Kullisaar T., Turk S., Punab M., Korrovits P., Kisand K., Rehema A., Zilmer K., Zilmer M., Mandar R. Oxidative stress in leucocytospermic prostatitis patients: preliminary results. Andrologia. 2008. V. 40. № 3. P. 161-172.
  10. Potts J.M., Pasqualotto F.F. Seminal oxidative stress in patients with chronic prostatitis. Andrologia. 2003. V. 35. № 5. P. 304-308.
  11. Paulis G. Inflammatory mechanisms and oxidative stress in prostatitis: the possible role of antioxidant therapy. Res. Rep. Urol. 2018. V. 10. P. 75-87.
  12. Ludwig M. Diagnosis and therapy of acute prostatitis, epididymitis and orchitis. Andrologia. 2008. V. 40. № 2. P. 76-80.
  13. Su Z.T., Zenilman J.M., Sfanos K.S., Herati A.S. Management of Chronic Bacterial Prostatitis. Curr. Urol. Rep. 2020. V. 21. № 7. P. 29.
  14. Zhu J., Yang C., Dong Z., Li L. The value of neutrophil elastase in diagnosis of type III prostatitis. Urol. J. 2014. V. 11. № 3. P. 1666-1672.
  15. Chen H., Li M.Y., Xu S. D., Zhu C.C., Zhang L. [Content of neutrophil elastase in EPS and seminal plasma: A combined predictor in the diagnosis of type IIIA prostatitis with secondary infertility]. Zhonghua Nan Ke Xue. 2017. V. 23. № 9. P. 786-792.
  16. Wang F., Ge A., Dai A., Wang Z., Mo Z. Analysis of Prostate-Specific Antigen-Related Indexes, Neutrophil-to-Lymphocyte Ratio in Patients with Concurrent Benign Prostatic Hyperplasia and Histologic Prostatitis. Clin. Lab. 2020. V. 66. № 1.
  17. Ahn H.K., Koo K.C., Chung B.H., Lee K.S. Comparison of the delta neutrophil index with procalcitonin, erythrocyte sedimentation rate, and C-reactive protein as predictors of sepsis in patients with acute prostatitis. Prostate Int. 2018. V. 6. № 4. P. 157-161.
  18. Ishtulin A.F., Korotkova N.V., Matveeva I.V., Ishtulina S.L., Minaev I.V., Polyakova P.M. Gomocistein kak prediktor snizheniya reproduktivnoj funkcii u muzhchin. Tekhnologii zhivyh sistem. 2022. T. 19. № 3. S. 55-62. DOI: https://doi.org/ 10.18127/j20700997-202203-06 (in Russian).
  19. Krainii P.A., Ibishev K.S. [Electronic microscopy assessment of immunological disorders in the secret of the prostate in patients with chronic recurrent bacterial prostatitis]. Urologiia. 2021. № 4. P. 68-72.
  20. Shangichev A.V. Oksid azota v krovi, sekrete prostaty i eyakulyate pri terapii hronicheskogo abakterial'nogo prostatita/sindroma hronicheskoj tazovoj boli kategorii IIIa. Kazanskij medicinskij zhurnal. 2009. T. 90. № 1. S. 69-71. (in Russian).
  21. Shangichev A.V. Opredelenie spektra vysshih zhirnyh kislot sekreta prostaty u bol'nyh s vospalitel'noj formoj sindroma hronicheskoj tazovoj boli (SKHTB IIIA) metodom gazozhidkostnoj hromatografii. Kubanskij nauchnyj medicinskij vestnik. 2008. № 6. S. 98-99. (in Russian).
  22. Shangichev A.V. Sostoyanie fermentnoj antioksidantnoj sistemy krovi, sekreta prostaty i eyakulyata pri standartnom lechenii hronicheskogo abakterial'nogo prostatita. Vestnik RUDN. 2009. № 3. S. 71-75. (in Russian).
  23. Chernogubova E.A. Markery vospaleniya v krovi i sekrete prostaty pacientov s sindromom hronicheskoj tazovoj boli. Izvestiya vuzov, Severo-Kavkazskij region: Estestvennye nauki. 2011. № 6. S. 123-136. (in Russian).
  24. Brestel E.P. Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemiluminescence. Biochem. Biophys. Res. Commun. 1985. V. 126. № 1. P. 482-488.
  25. Gyllenhammar H. Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J. Immunol. Methods. 1987. V. 97. № 2. P. 209-213.
  26. Dang P.M., Rais S., Hakim J., Perianin A. Redistribution of protein kinase C isoforms in human neutrophils stimulated by formyl peptides and phorbol myristate acetate. Biochem. Biophys. Res. Commun. 1995. V. 212. № 2. P. 664-672.
  27. Dahlgren C. Analysis of luminol-dependent chemiluminescence from granule depleted neutrophil cytoplasts reveals two different light-emitting mechanisms. J. Biolumin. Chemilumin. 1988. V. 2. № 1. P. 25-33.
  28. Caldefie-Chezet F., Walrand S., Moinard C., Tridon A., Chassagne J., Vasson M.P. Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clin. Chim. Acta. 2002. V. 319. № 1. P. 9-17.
  29. Alekseev A.V., Proskurnina E.V., Vladimirov Y.A. Determination of Antioxidants by Sensitized Chemiluminescence Using 2,2'-azo-bis(2-amidinopropane). Moscow University Chemistry Bulletin. 2012. V. 67. № 3. P. 127-132.
  30. Zhang R., Liu C., Yang L., Ji T., Zhang N., Dong X., Chen X., Ma J., Gao W., Huang S., Chen L. NOX2-derived hydrogen peroxide impedes the AMPK/Akt-mTOR signaling pathway contributing to cell death in neuronal cells. Cell Signal. 2022. V. 94. P. 110330.
  31. Dallegri F., Ottonello L. Tissue injury in neutrophilic inflammation. Inflamm. Res. 1997. V. 46. № 10. ‒ P. 382-391.
  32. Dahlgren C., Karlsson A. Respiratory burst in human neutrophils. J. Immunol. Methods. 1999. V. 232. № 1-2. P. 3-14.
  33. Dacheux D., Toussaint B., Richard M., Brochier G., Croize J., Attree I. Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect. Immun. 2000. V. 68. № 5. P. 2916-2924.
  34. Mencacci A., Cenci E., Repetto A., Mazzolla R., Bistoni F., Aversa F., Aloisi T., Vecchiarelli A. A multidrug-resistant Pseudomonas aeruginosa isolate from a lethal case of sepsis induces necrosis of human neutrophils. J. Infect. 2006. V. 53. № 6. P. e259-264.
  35. Kuznetsova M.V., Maslennikova I.L., Nekrasova I.V., Shirshev S.V. Effect of mixed culture supernatants of Pseudomonas aeruginosa and Escherichia coli on apoptosis, necrosis, and oxidative activity of neutrophils. Dokl. Biol. Sci. 2015. V. 461. P. 112-115.
  36. Vareechon C., Zmina S.E., Karmakar M., Pearlman E., Rietsch A. Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils. Cell Host Microbe. 2017. V. 21. № 5. P. 611-618 e5.
  37. Capsoni F., Minonzio F., Ongari A.M., Bonara P., Guidi G., Zanussi C. Increased expression of C3b and C3bi receptors on human neutrophils and monocytes induced by a glycoprotein extract from Klebsiella pneumoniae (RU41740). Int. J. Immunopharmacol. 1991. V. 13. № 2-3. P. 227-233.
  38. Villa-Ambriz J., Rodriguez-Orozco A.R., Bejar-Lozano C., Cortes-Rojo C. The increased expression of CD11c and CD103 molecules in the neutrophils of the peripheral blood treated with a formula of bacterial ribosomes and proteoglycans of Klebsiella pneumoniae. Arch. Bronconeumol. 2012. V. 48. № 9. P. 316-319.
  39. Birnberg-Weiss F., Castillo L.A., Pittaluga J.R., Martire-Greco D., Gomez S.A., Landoni V.I., Fernandez G.C. Modulation of neutrophil extracellular traps release by Klebsiella pneumoniae. J. Leukoc. Biol. 2021. V. 109. № 1. P. 245-256.
  40. Yang G., Xu Q., Chen S. Neutrophil function in hypervirulent Klebsiella pneumoniae infection. Lancet Microbe. 2022. V. 3. № 4. P. e248.
Date of receipt: 05.02.2024
Approved after review: 24.06.2024
Accepted for publication: 22.10.2024