350 rub
Journal Technologies of Living Systems №2 for 2024 г.
Article in number:
Influence of atropine on blood indices in laboratory rodents
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202402-05
UDC: 615.017
Authors:

D.Yu. Akimov1, M.N. Makarova2, М.А. Akimova3, S.O. Han4, P.D. Shabanov5

1–4 RMS “NPO “HOME OF PHARMACY” (Leningrad region, Vsevolozhsky district, Kuzmolovsky settlement, Russia)

1,5 Federal State Budgetary Scientific Institution "Institute of Experimental Medicine" (Saint-Petersburg, Russia)

1 akimov.du@doclinika.ru, 2 makarova.mn@doclinika.ru, 3 akimova.ma@doclinika.ru, 4 han.so@doclinika.ru, 5 shabanov.pd@iemspb.ru

Abstract:

During toxicological and biomedical research, animals are often subjected to procedures requiring general anesthesia. Anticholinergic drugs, including atropine, are usually administered to animals undergoing general anesthesia for the purpose of premedication, which protects cardiac function, prevents bradycardia and the risk of arrhythmia, reduces the secretion of bronchial and salivary glands. The literature data confirm the widespread use of atropine in the protocols of anesthesiological provision of laboratory animals. In turn, when conducting a safety study of the tested drug candidate objects, it has not been reliably established whether atropine can affect blood parameters evaluated in toxicological and other pharmacological experiments. In connection with the above, the purpose of our experiment was to study the effect of atropine sulfate on the blood picture in mice, rats, Syrian hamsters and guinea pigs according to parameters analyzed in toxicological and pharmacological studies.

The study was conducted on the basis of JSC NPO DOM OF PHARMACY and FGBNU IEM in February 2023. This experiment was approved at the meeting of the bioethical commission, conclusion No. 1.2/23. The study used animals obtained in the nursery of NPO DOM PHARMACY JSC. All animal species are clinically healthy, before the study they were tested for infection with Streptococcus
b-haemolytic, Streptococcus pneumoniae, Staphylococcus aureus, Mycoplasma pulmonis, Salmonella spp., Clostridium spp., Pasteurella pneumotropica
, ecto- and endoparasites. In all cases, the animals were healthy.

The animals were kept under standard conditions in accordance with Directive 2010/63/EU of the European Parliament and of the Council of the European Union of September 22, 2010 on the protection of animals used for scientific purposes. Feeding and watering ad libitum. Wood pellets were used as bedding. The animals were kept in controlled environmental conditions (20-26 °C and relative humidity 30-70%). The light mode was 12 hours of light and 12 hours of darkness. An air exchange mode was installed, providing a change of about 15 volumes of the room per hour.

Based on the conducted research, it was established: a) statistically significant changes in aspartate aminotransferase – in all animal species; in mice – monocytes, platelets, hemoglobin, cholesterol and triglycerides; in Syrian hamsters – monocytes and platelets, hemoglobin and hematocrit; in guinea pigs – hemoglobin; c) deviations from reference intervals in the level of monocytes and hemoglobin in mice, hematocrit in rats and granulocytes – in female rats; c) the absence of clinically significant abnormalities in the white and red blood system, as well as in the work of internal organs, which is confirmed by a biochemical blood test. The data obtained can help to interpret and differentiate the changes obtained in the study under the action of atropine from the action of drug candidates.

Pages: 54-64
For citation

Akimov D.Yu., Makarova M.N., Akimova M.A., Han S.O., Shabanov P.D. Influence of atropine on blood indices in laboratory rodents. Technologies of Living Systems. 2024. V. 21. № 2. Р. 54-64. DOI: https://doi.org/10.18127/j20700997-202402-05 (In Russian).

References
  1. Tikhonova G.A., Kotov O.V., Markin A.A. Biomarkery kak instrumenty mediko-biologicheskogo monitoringa i kontrolya (Obzor literatury. Chast 2). Tekhnologii zhivykh sistem. 2023. T. 20. № 4. S. 5–18. DOI: 10.18127/j20700997-202304-01 (in Russian).
  2. Brock K.A. Preanaesthetic use of atropine in small animals. Australian Veterinary Journal. 2001. V. 79. № 1. P. 24–25. DOI: 10.1111/j.1751-0813. 2001.tb10632.x
  3. Elibrary ofitsialnyy sayt – Rossiya. URL: https://www.elibrary.ru/defaultx.asp (data obrashcheniya: 29.10.2023). (in Russian).
  4. Kadomtsev D.V., Pasechnikova E.A., Golubev V.G. Zoletil-ksilazinovyy narkoz v eksperimentakh u krys. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy. 2015. № 5–1. S. 56–57. (in Russian).
  5. Wu J. et al. Anesthesia and Intubation of Preadolescent Mouse Pups for Cardiothoracic Surgery. Journal of Visualized Experiments. 2022. № 184. P. e64004. DOI: 10.3791/64004
  6. Jamal M.A. et al. Safety and efficacy of ketamine xylazine along with atropine anesthesia in BALB/c mice. Brazilian Journal of Pharmaceutical Sciences. 2019. V. 55. DOI: 10.1590/s2175-97902019000317231
  7. Scioscia N.P. et al. Development of an improved anesthesia protocol to increase CF1 mice survival in a portal vein infection with Echinococcus granulosus sensu lato protoscoleces. Heliyon. 2021. V. 7. № 3. P. e06496. DOI: 10.1016/j.heliyon. 2021.e06496
  8. Scioscia N.P. et al. How to improve the survival of female cf-1 mice during the infection via the portal vein with Echinococcus granulosus protoscoleces. 2021.
  9. Wang Y. et al. A mouse model of cardiogenic shock. Cardiovascular Research. 2021. V. 117. № 12. P. 2414-2415. DOI: 10.1093/cvr/cvab290
  10. Liu B. et al. The Role of Voltage-Gated Sodium Channel 1.8 in the Effect of Atropine on Heart Rate: Evidence from a Retrospective Clinical Study and Mouse Model. Frontiers in Pharmacology. 2020. V. 11. P. 1163. DOI: 10.3389/fphar.2020.01163
  11. Mihaela M.C. et al. Effect of isoflurane anesthesia on autonomic nervous system stimulation/inhibition in rats. Acta Medica Marisiensis. 2019. V. 65. P. 10–11.
  12. Vovk A.N. et al. Principles of therapy and care of laboratory animals after chronic administration into Xylasine-Zoletyl® Anesthesia. International Journal of Veterinary Science and Research. 2020. V. 6. № 1. P. 114–117. DOI: 10.17352/ijvsr.000062
  13. Correa F.C.F. et al. Respiratory mechanics and lung histology in normal rats anesthetized with sevoflurane. Journal of Applied Physiology. 2001. V. 91. № 2. P. 803–810. DOI: 10.1152/jappl.2001.91.2.803
  14. Sencio V. et al. Alteration of the gut microbiota’s composition and metabolic output correlates with COVID-19-like severity in obese NASH hamsters. Gut microbes. 2022. V. 14. № 1. P. 2100200. DOI: 10.1080/19490976.2022.2100200
  15. Wenzel J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature neuroscience. 2021. V. 24. № 11. P. 1522–1533. DOI: 10.1038/s41593-021-00926-1
  16. Hoffman S., Alvares D., Adeli K. GLP-1 attenuates intestinal fat absorption and chylomicron production via vagal afferent nerves originating in the portal vein. Molecular Metabolism. 2022. V. 65. P. 101590. DOI: 10.1016/j.molmet.2022.101590
  17. Mukherjee P. et al. Role of animal models in biomedical research: a review. Laboratory Animal Research. 2022. V. 38. № 1. P. 1–17. DOI: https://doi.org/10.1186/s42826-022-00128-1
  18. Arguelles J. et al. Intrabiliary pressure changes produced by narcotic drugs and inhalation anesthetics in guinea pigs. Anesthesia and Analgesia. 1979. V. 58. № 2. P. 120–123.
  19. Sixtus R.P. et al. Nitrous oxide improves cardiovascular, respiratory, and thermal stability during prolonged isoflurane anesthesia in juvenile guinea pigs. Pharmacology research & perspectives. 2021. V. 9. № 1. P. e00713. DOI: 10.1002/prp2.713
  20. Kenmochi M. et al. The effect of systemic administration of salicylate on the auditory cortex of guinea pigs. Plos one. 2021. V. 16. № 11. P. e0259055. DOI: 10.1371/journal.pone.0259055
  21. Tikhonova G.A., Kotov O.V., Markin A.A. Biomarkery kak instrument mediko-biologicheskogo monitoringa i kontrolya (Obzor literatury. Chast 1). Tekhnologii zhivykh sistem. 2023. T. 20. № 2. S. 18–26. DOI: 10.18127/j20700997-202302-02 (in Russian).
  22. Roberts S.M., James R.C., Williams P.L. (ed.). Principles of toxicology: environmental and industrial applications. John Wiley & Sons. 2022.
  23. Miroshnikov M.V., Makarova M.N. Variabelnost biokhimicheskikh pokazateley krovi i ustanovleniye referensnykh intervalov v doklinicheskikh issledovaniyakh. Soobshcheniye 4: myshi. Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2021. № 3. DOI: 10.29296/2618723X-2021-03-08 (in Russian).
  24. Voytenko N.G., Makarova M.N., Zuyeva A.A. Variabelnost biokhimicheskikh pokazateley krovi i ustanovleniye referensnykh intervalov v doklinicheskikh issledovaniyakh. Soobshcheniye 1: krysy. Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2020. № 1. DOI: 10.29296/2618723X-2020-01-06 (in Russian).
  25. Miroshnikov M.V., Sultanova K.T., Kovaleva M.A., Makarova M.N. Variabelnost biokhimicheskikh pokazateley krovi i ustanovleniye referentnykh intervalov v doklinicheskikh issledovaniyakh. Soobshcheniye 8: siriyskiye khomyachki. Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2023. № 2. DOI: 10.57034/2618723X-2023-02-08 (in Russian).
  26. Miroshnikov M.V., Sultanova K.T., Kovaleva M.A., Makarova M.N. Variabelnost biokhimicheskikh pokazateley krovi i ustanovleniye referentnykh intervalov v doklinicheskikh issledovaniyakh. Soobshcheniye 7: morskiye svinki. Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2022. № 3. DOI: 10.57034/2618723X-2022-03-01 (in Russian).
  27. Abrashova T.V., Gushchin Ya.A., Kovaleva M.A. i dr. SPRAVOChNIK. Fiziologicheskiye. biokhimicheskiye i biometricheskiye pokazateli normy eksperimentalnykh zhivotnykh: Doklinicheskiye issledovaniya. Sankt-Peterburg: OOO "Izdatelstvo "LEMA". 2013. 116 s. (in Russian).
  28. Sorokina A.V., Alekseyeva S.V., Eremina N.V., Durnev A.D. Opyt provedeniya kliniko-laboratornykh issledovaniy v doklinicheskoy otsenke bezopasnosti lekarstv (chast 2: biokhimicheskiye i patomorfologicheskiye issledovaniya). Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. Regulyatornyye issledovaniya i ekspertiza lekarstvennykh sredstv. 2019. T. 9. № 4.
    S. 272–279. DOI: 10.30895/1991-2919-2019-9-4-272-279 (in Russian).
  29. Koptyayeva K.E., Gushchin Ya.A., Belyayeva E.V. i dr. Metodika vskrytiya i izvlecheniya organov laboratornykh zhivotnykh. Soobshcheniye 4: morskaya svinka. peschanka. degu. Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2019. № 2. S. 5. DOI: 10.29296/2618723X-2019-02-05 (in Russian).
  30. Koptyayeva K.E., Gushchin Ya.A., Belyayeva E.V. i dr. Metodika vskrytiya i izvlecheniya organov laboratornykh zhivotnykh. Soobshcheniye 3: khomyachok. Laboratornyye zhivotnyye dlya nauchnykh issledovaniy. 2019. № 1. S. 15–39. DOI: 10.29296/2618723X-2019-01-02 (in Russian).
  31. Dushenina O.A., Karpenko L.Yu., Vasilyeva S.V. Analiz metodov vzyatiya krovi u eksperimentalnykh krys. Veterinariya Kubani. 2022. № 6. S. 21–24. DOI: 10.33861/2071-8020-2022-6-21-24 (in Russian).
Date of receipt: 28.12.2023
Approved after review: 27.04.2023
Accepted for publication: 27.05.2024