350 rub
Journal Technologies of Living Systems №2 for 2024 г.
Article in number:
Markers of long-term risks of developing myocardial changes under the influence of space flight and its simulated effects on Earth: search for markers by proteomic methods
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202402-01
UDC: 57.042, 577.2, 571.2
Authors:

D.N. Kashirina1, L.H. Pastushkova2, A.G. Goncharova3, I.N. Goncharov4, I.M. Larina5

1–5 Institute of Biomedical Problems of RAS (Moscow, Russia)

1 daryakudryavtseva@mail.ru, 2 lpastushkova@mail.ru, 3 goncharova.anna@gmail.com,
4 igorgoncharov@gmail.com, 5 irina.larina@gmail.com

Abstract:

The search for proteomic markers of the risks of developing myocardial fibrosis under the influence of real and simulated factors of space flight (SF) is relevant for preserving professional longevity and maintaining a high level of health of cosmonauts and workers in other hazardous professions. The purpose of the work was to study the influence of factors in ground-based experiments with the participation of healthy volunteers (rotation in a short-radius centrifuge (SRC), staying in an anti-orthostatic position during prolonged head-down bed rest - 6° for 21 days (HDBR) and cosmonauts in six-month space flights (SF), on the level of ST2 - a proteomic marker of myocardial overextension and the risk of developing cardiac fibrosis. The hypothesis about the presence of a cumulative effect of overextension of the hollow muscular organ heart under the influence of gravitational forces is also being tested. The level of the cardiac marker ST2 was assessed with the participation of 6 healthy volunteers in a spin experiment on a short-radius centrifuge, 6 test participants in long-term hypokinesia - 6° for 21 days and 9 cosmonauts who performed space flights lasting 180-269 days. The sST2 level was assessed using the enzyme-linked immunosorbent assay (ELISA).

The method was found to be highly sensitive in determining ST2 levels in plasma samples from healthy volunteers, participants in ground-based model studies, and cosmonauts after long-term space flights. Individual variability of both the basal ST2 level and the degree of its stimulation by experimental influences was revealed. The ST2 level changes significantly at different periods of HDBR. The dynamics of the ST2 level in 21 days of HDBR coincides with data on the timing of changes in the volume of the heart chambers, a decrease in plasma volume and a decrease in the mass of the left ventricular myocardium, recorded by other researchers. Repeated rotation on the central circulation zone causes cumulative effects of overstretching of the myocardium as a hollow elastic organ, displaced along the vector of gravitational influences. In cosmonauts, an increase in ST2 levels in the first day after a flight is associated with a more pronounced overstretch of the myocardium, adapted to the conditions of long-term life in microgravity, under the influence of overloads during the landing stage.

The determination of ST2 is important for identifying individuals with individual high or, on the contrary, low adaptive potential to the effects of overload, as well as for objectifying the characteristics of the biomechanical load on cardiomyocytes under the influence of single and multiple rotations on the central nervous system and the formation of individual protocols for medical selection and assessment of rotation modes of the central nervous system. Periodic measurement of ST2 in cosmonauts is important for monitoring and assessing myocardial stability in relation to overload and the risk of developing cardiac fibrosis in the long-term post-flight period.

Pages: 5-17
For citation

Kashirina D.N., Pastushkova L.H., Goncharova A.G., Goncharov I.N., Larina I.M. Markers of long-term risks of developing myocardial changes under the influence of space flight and its simulated effects on Earth: search for markers by proteomic methods. Technologies of Living Systems. 2024. V. 21. № 2. Р. 5-17. DOI: https://doi.org/10.18127/j20700997-202402-01 (In Russian).

References
  1. Tikhonova G.A., Kotov O.V., Markin A.A. Biomarkery kak instrument mediko-biologicheskogo monitoringa i kontrolya (Obzor literatury. Chast 2). Tekhnologii zhivykh sistem. 2023. T. 20. № 4. S. 5-18. DOI: 10.18127/j20700997-202304-01 (in Russian).
  2. Hughson R.L., Helm A., Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 2018. V. 15(3). P. 167–180. DOI: 10.1038/nrcardio.2017.157
  3. Iskovitz I., Kassemi M., Thomas J.D. Impact of weightlessness on cardiac shape and left ventricular stress/strain distributions. J. Biomech. Eng. 2013. V. 135. P. 4025464.
  4. Jirak P., Wernly B., Lichtenauer M., Paar V., Franz M., Knost T., Abusamrah T., Kelm M., Muessig J.M., Bimpong-Buta N.Y., Jung C. Dynamic changes of heart failure biomarkers in response to parabolic flight. Int. J. Mol. Sci. 2020. V. 21(10). P. 3467. DOI: 10.3390/ijms21103467
  5. Levine B.D., Zuckerman J.H., Pawelczyk J.A. Cardiac atrophy afterbed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation. 1997. V. 96. P. 517–525.
  6. Summers R.L., Martin D.S., Meck J.V., Coleman T.G. Mechanism of spaceflight-induced changes in left ventricular mass. Am. J. Cardiol. 2005. V. 95. P. 1128–1130.
  7. Januzzi J.L. Jr. ST2 as a cardiovascular risk biomarker: from the bench to the bedside. J. Cardiovasc. Transl. Res. 2013. V. 6(4). Р. 493–500. DOI: 10.1007/s12265-013-9459-y
  8. Uchasova E.G., Gruzdeva O.V., Dyleva Yu.A., Karetnikova V.N. Interleykin-33 i fibroz: sovremennyy vzglyad na patogenez. Meditsinskaya immunologiya. 2018. V. 20(4). P. 477–484. (in Russian).
  9. Bimpong-Buta N.Y., Jirak P., Wernly B., Lichtenauer M., Knost T., Abusamrah, T., Kelm M., Jung C. Blood parameter analysis after short term exposure to weightlessness in parabolic flight. Clin. Hemorheol. Microcirc. 2018. V. 70. P. 477–486.
  10. Orlov O.I., Koloteva M.I. Tsentrifuga korotkogo radiusa kak novoye sredstvo profilaktiki neblagopriyatnykh effektov nevesomosti i perspektivnyye plany po razrabotke problemy iskusstvennoy sily tyazhesti primenitelno k mezhplanetnym poletam. Aviakosmicheskaya i ekologicheskaya meditsina. 2017. T. 51(7). S. 11–18. (in Russian).
  11. Malyugin B.E., Koloteva M.I., Pozdeyeva N.A., Morozova T.A., Pikusova S.M., Sychova D.V. Study of functional adaptation of the visual system in the conditions of experimental modes of artificial gravity, created on a short-radius centrifuge. Fyodorov journal of ophthalmic surgery. 2019. № 2. P. 59–64.
  12. Fomina E.V., Lysova N.Y., Chernova M.V., Khustnudinova D.R., Kozlovskaya I.B. Comparative analysis of preventive efficacy of different modes of locomotor training in space flight. Human Physiology. 2016. V. 42(5). P. 539–545.
  13. Clément G., Paloski W.H., Rittweger J. Centrifugation as a countermeasure during bed rest and dry immersion: What has been learned?. J. Musculoskelet Neuronal Interact 2016. V. 16(2). P. 84–91.
  14. Lobachik V.I., Abrosimov S.V., Zhidkov V.V., Endeka D.K. Hemodynamic effects of microgravity and their ground-based simulations. Acta Astronaut. 1991. V. 23. P. 35–40.
  15. Larina I.M., Sukhanov Yu.V., Lakota N.G. Mekhanizmy rannikh reaktsiy vodno-elektrolitnogo obmena u cheloveka v razlichnykh nazemnykh modelyakh effektov mikrogravitatsii. Aviakosmicheskaya i ekologicheskaya meditsina. 1999. T. 33(4). S. 17–23. (in Russian).
  16. Westby C.M., Martin D.S., Lee S.M., et al. Left ventricular remodeling during and after 60 days of sedentary head-down bed rest. J. Appl. Physiol. 2016. V. 120(8). P. 956–964. DOI: 10.1152/japplphysiol.00676.2015
  17. Stenger M.B., Evans J.M., Knapp C.F., et al. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur. J. Appl. Physiol. 2012. V. 112. P. 605–616. DOI: 10.1007/s00421-011
  18. Palombo C., Morizzo C., Baluci M., et al. Large artery remodeling and dynamics following simulated microgravity by prolonged head-down tilt bed rest in humans. Biomed. Res. Int. 2015. V. 2015. P. 342565. DOI: 10.1155/2015/342565
  19. Zhong G., Zhao D., Li J., Liu Z., Pan J., Yuan X., Xing W., Zhao Y., Ling S., Li Y. WWP1 deficiency alleviates cardiac remodeling induced by simulated microgravity. Front. Cell Dev. Biol. 2021. V. 9. P. 739944. DOI: 10.3389/fcell.2021.739944
  20. Shen M., Frishman W.H. Effects of spaceflight on cardiovascular physiology and health. Cardiol. Rev. 2019. P. 27(3). P. 122–126. DOI: 10.1097/CRD.0000000000000236
  21. Moore A.D., Lynn P.A., Feiveson A.H. The first 10 years of aerobic exercise responses to long-duration ISS flights. Aerosp. Med. Hum. Perform. 2015. V. 86(12 Suppl). P. A78–A86. DOI: 10.3357/AMHP.EC10.2015
  22. Baran R., Marchal S., Garcia Campos S., Rehnberg E., Tabury K., Baselet B., Wehland M., Grimm D., Baatout S. The cardiovascular system in space: focus on in vivo and in vitro studies. Biomedicines. 2021. V. 10(1). P. 59. DOI: 10.3390/biomedicines10010059
  23. Khine H.W., Steding-Ehrenborg K., Hastings J.L., et al. Effects of prolonged spaceflight on atrial size, atrial electrophysiology, and risk of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2018. V. 11(5). P. e005959. DOI: 10.1161/CIRCEP.117.005959
  24. Baevsky R.M., Baranov V.M., Funtova I.I., et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. 2007. V. 103. P. 156–161. DOI: 10.1152/japplphysiol.00137.2007
  25. Hughson R.L., Robertson A.D., Arbeille P., et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 2016. V. 310. P. H628–H638. DOI: 10.1152/ajpheart.00802.2015
  26. Arbeille P., Provost R., Zuj K. Carotid and femoral arterial wall distensibility during long-duration spaceflight. Aerosp. Med. Hum. Perform. 2017. V. 88. P. 924–930. DOI: 10.3357/amhp.4884.2017
  27. Möstl S., Orter S., Hoffmann F., et al. Limited effect of 60-days strict head down tilt bed rest on vascular aging. Front. Physiol. 2021. V. 12. P. 685473. DOI: 10.3389/fphys.2021.685473
  28. Hoffmann F., Rabineau J., Mehrkens D., et al. Cardiac adaptations to 60 day head-down-tilt bed rest deconditioning. Findings from the AGBRESA study. ESC Heart Fail. 2021. V. 8(1). P. 729–744. DOI: 10.1002/ehf2.13103
  29. Kotovskiy E.F., Shimkevich L.L. Funktsionalnaya morfologiya pri ekstremalnykh vozdeystviyakh. M.: Nauka. 1971.
  30. Molodtsov V.O., Smirnov V.Yu., Solnushkin S.D., Chikhman V.N. Apparatno-programmnoye obespecheniye povedencheskogo eksperimenta. Biomeditsinskaya radioelektronika. 2021. T. 1(24). C. 42–47.
  31. Rehman S.U., Mueller T., Januzzi J.L. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008. V. 52(18). P. 1458–1465.
  32. Wnorowski A., Sharma A., Chen H., Wu H., Shao N.Y., Sayed N., Liu C., Countryman S., Stodieck L.S., Rubins K.H., Wu S.M., Lee P.H.U., Wu J.C. Effects of spaceflight on human induced pluripotent stem cell-derived cardiomyocyte structure and function. Stem Cell Reports. 2019. V. 13(6). P. 960–969. DOI: 10.1016/j.stemcr.2019.10.006
  33. Agarwal P., Verzi M.P., Nguyen T., Hu J., Ehlers M.L., McCulley D.J., Xu S.M., Dodou E., Anderson J.P., Wei M.L., Black B.L. The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development. 2011. V. 138(12). P. 2555–2565. DOI: 10.1242/dev.056804
  34. Lupón J., Gaggin H.K., de Antonio M., Domingo M., Galán A., Zamora E., Vila J., Peñafiel J., Urrutia A., Ferrer E., Vallejo N., Januzzi J.L., Bayes-Genis A. Biomarker-assist score for reverse remodeling prediction in heart failure: The ST2-R2 score. Int. J. Cardiol. 2015. V. 184. P. 337–343.
  35. Ojji D.B., Opie L.H., Lecour S., Lacerda L., Adeyemi O., Sliwa K. Relationship between left ventricular geometry and soluble ST2 in a cohort of hypertensive patients. J. Clin. Hypertens (Greenwich). 2013. V. 15(12). P. 899–904. DOI: 10.1111/jch.12205
  36. Dyleva Yu.A., Gruzdeva O.V., Akbasheva O.E., Uchasova E.G., Fedorova N.V., Chernobay A.G., Karetnikova V.N., Kosareva S.N., Kashtalap V.V., Fedorova T.S., Barbarash O.L. Znacheniye stimuliruyushchego faktora rosta st2 i NP-proBNP v otsenke postinfarktnogo remodelirovaniya serdtsa. Rossiyskiy kardiologicheskiy zhurnal. 2015. V. (12). P. 63–71. (in Russian).
  37. Dieplinger B., Egger M., Haltmayer M., Kleber M.E., H. Scharnagl., Silbernagel G., de Boer R.A., Maerz W., Mueller T. Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: results from the Ludwigshafen risk and cardiovascular health study. Clin. Chem. 2014. V. 60(3). P. 530–540.
Date of receipt: 28.12.2023
Approved after review: 27.04.2024
Accepted for publication: 27.05.2024